
 

Verification & Validation 
U N L E A S H E D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ravi Harsha A 

GMITE, IIMB 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 2 of 130 

 

 

MODIFICATION HISTORY 

 

 

REVISION 

 

DATE AUTHOR REMARKS 

V_an_V_Unleashed_i01 01-Jan-2004 Ravi HARSHA A Draft Creation and Initial Release 

V_an_V_Unleashed_i02 01-May-2004 Ravi HARSHA A Updated with revised Technical Requirements. 

V_an_V_Unleashed_i03 18-Aug-2004 Ravi HARSHA A Updated with review remarks.. 

V_an_V_Unleashed_i04 01-Dec-2004 Ravi HARSHA A Updated with revised Technical Information. 

V_an_V_Unleashed_i05 20-May-2005 Ravi HARSHA A Updated the Checklists section. 

V_an_V_Unleashed_i06 30-Dec-2009 Ravi HARSHA A Update of HSIT/SSIT/UT with examples. 

 
 

 

 

 

 

 

Copyright 

This document may be copied in its entirety or extracts made, only if the source is acknowledged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 3 of 130 

 

NOTA: 

 

Everyone is of the opinion that irrespective of the lifecycle model used for software development, 

embedded avionics software has to be tested. Efficiency and quality are best served by testing the 

software as early in the lifecycle as practical, with full regression testing whenever changes are made.  

 

This reference document addresses a basic question often posed by developers who are new to the 

concept of thorough verification and validation: Why bother to “verify and validate”?  Through this 

document a sincere attempt has been made to answer this question in a methodically phased manner. 

 

Hence any references to the collection of technical contents present in this document with that of any 

technical documents of any individual or standards or organization or institutes or governing bodies is 

very much un-intentional and it is purely co-incidental.  

          - The Author 

 

 

 

 

Ravi Harsha Profile -  

 

• Acquired ITES experience of 10 years in Aerospace & Defense (embedded avionics domain.) 

• 03 years Project/Program Management and 05 years Delivery Management expertise. 

• Managed long term (> 03 yrs), large teams (60 Engineers) and high revenue projects (> $3 million). 

• Driving value creation which resulted in cost saving of 6500 hours to customer over 3.5 years. 

• Execution experience of diversified roles of Onsite Coordinator, Engagement Manager. 

• Wide experience in working across cultures (France’01, Germany’05, Canada’06 and USA’08). 

• Built teams for various embedded avionics software projects at offshore and onsite. 

• Managed long term (> 1 year), large Airbus 380 projects (over 20 Engineers). 

• Experience of working with top Aerospace & Defense customers’ such as Airbus, Boeing, Pratt & Whitney 

Canada, Hamilton Sundstrand, Nord-Micro, Thales Avionics, Snecma Group. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 4 of 130 

 

ABBREVIATIONS  

 

CASE Computer Aided Software Engineering 

CC1 Control Category 1 

CC2 Control Category 2 

CCB Change Control Board 

CI Configuration Item 

CM Configuration Management 

CO                   Change Order 

COTS               Commercial Off The Shelf 

CR  Change Request 

CRC  Compliance Review for first Certification 

CSCI Computer Software Configuration Item (Executable Object code) 

CSI Computer Software Item 

DER Designated Engineering Representative 

FDR  First Delivery Review 

FFR  First Flight Review 

HOOD  Hierarchical Object Oriented Design 

LLR  Low Level Requirement 

LLT  Low Level Test 

PAD  Product Architectural Description 

PDL  Product Development Leader 

PDP  Product Development Plan 

PECI  Product Life Cycle Environment Configuration Index 

PFD  Product Functional Description  

PM  Product Manager 

PPR  Planning Process Review 

PR  Problem Report 

PRB  Problem Reporting Board 

PRD  Product Requirements Data 

PSAC  Plan for Software Aspects of Certification 

PVVL  Product Validation and Verification Leader 

SADT  Structured Analysis and Design Technique 

SAP  Software Acceptance Plan 

SAS  Software Accomplishment Summary 

SATP  Software Acceptance Test Procedures 

SATR  Software Acceptance Test Results 

SCI  Software Configuration Index 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 5 of 130 

 

SCM  Software Configuration Management  

SCML  Software Configuration Management Leader 

SCMP   Software Configuration Management Plan 

SCMR  Software Configuration Management Records 

SDDD  Software Detailed Design Description 

SDL  Software Development Leader 

SDP  Software Development Plan 

SDR  Software Design Review   

SIP  Software Integration Plan 

SIRD  Software Interface Requirement Data 

SITP  Software Integration Test Procedures 

SITR  Software Integration Test Results 

SM  Software Manager 

SOW  Statement Of Work 

SPDD  Software Preliminary Design Description 

SPDR  Software Preliminary Design Review 

SQA  Software Quality Assurance  

SQAL  Software Quality Assurance Leader 

SQAP  Software Quality Assurance Plan 

SQAR  Software Quality Assurance Records 

SRD  Software Requirements Data 

SRR  Software Requirements Review 

STD  Software Traceability Data 

SUTP  Software Unit Test Procedures 

SUTR  Software Unit Test Results 

SVVL  Software Validation and Verification Leader 

SVVP  Software Validation and Verification Plan 

SVVR  Software Validation and Verification Results 

TC  Technical Check 

TRR  Test Readiness Review 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 6 of 130 

 

 - TABLE OF CONTENTS -  

ABBREVIATIONS ..................................................................................................................................................................... 4 

1.0 SCOPE ............................................................................................................................................................................... 10 

1.1 DOCUMENT IDENTIFICATION ..................................................................................................................................... 10 

1.2 INTENDED AUDIENCE ................................................................................................................................................. 10 

1.3 DOCUMENT OVERVIEW .............................................................................................................................................. 10 

2.0 INTRODUCTION ................................................................................................................................................................ 11 

3.0 SOFTWARE VERIFICATION PROCESS: A DO-178B PERSPECTIVE ........................................................................... 12 

3.1 INPUT / OUTPUT REPRESENTATION ......................................................................................................................... 12 

3.2 PROCESS DOCUMENTS ............................................................................................................................................. 12 

3.2.1 INPUTS ................................................................................................................................................................. 12 

3.2.2 OUTPUTS.............................................................................................................................................................. 12 

3.3 DOCUMENTS TRACEABILITY WITH DO-178B ............................................................................................................ 13 

4.0 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) ........................................................................................................ 14 

4.1 V LIFE CYCLE MODEL .................................................................................................................................................. 14 

4.2 REVIEWS DURING VEE LIFE CYCLE MODEL OF SDLC ............................................................................................. 16 

4.3 DATA TO BE MADE AVAILABLE FOR REVIEWS ......................................................................................................... 17 

4.4 VERIFICATION AND VALIDATION ............................................................................................................................... 18 

5.0 SOFTWARE VERIFICATION STRATEGY ........................................................................................................................ 20 

5.1 SOFTWARE TEST PRIORITIES ................................................................................................................................... 20 

5.2 SOFTWARE TEST PLAN .............................................................................................................................................. 21 

5.2.1 SOFTWARE VERIFICATION PROCESS INPUTS ................................................................................................ 22 

5.2.2 SOFTWARE STANDARDS ................................................................................................................................... 22 

5.2.3 INDEPENDENCE CRITERIA ................................................................................................................................. 22 

5.2.4 REVIEW PROCEDURES ...................................................................................................................................... 22 

6.0 SOFTWARE TESTING PROCESS .................................................................................................................................... 24 

6.1 SOFTWARE TESTING LEVELS .................................................................................................................................... 24 

6.2 REQUIREMENTS BASED TESTING (RBT) .................................................................................................................. 24 

6.3 REQUIREMENTS BASED HSIT OBJECTIVES ............................................................................................................. 25 

6.4 REQUIREMENTS BASED SSIT OBJECTIVES ............................................................................................................. 26 

6.5 INPUTS AND OUTPUTS FOR HSIT AND SSIT ............................................................................................................. 28 

6.6 REQUIREMENTS BASED UT OBJECTIVES ................................................................................................................ 28 

6.7 INPUTS AND OUTPUTS FOR UT ................................................................................................................................. 29 

7.0 SYSTEM TESTING ............................................................................................................................................................ 30 

7.1 ETVX CRITERIA FOR SYSTEM TESTING .................................................................................................................... 31 

7.2 SYSTEM TESTING OBJECTIVES: ................................................................................................................................ 31 

8.0 INTEGRATION TESTING .................................................................................................................................................. 33 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 7 of 130 

 

8.1 ETVX CRITERIA FOR INTEGRATION TESTING .......................................................................................................... 35 

8.2 I/O FOR INTEGRATION TESTING ................................................................................................................................ 35 

8.3 INTEGRATION TESTING OBJECTIVES ....................................................................................................................... 35 

8.4 HARDWARE-SOFTWARE INTEGRATION TESTING (HSIT) ........................................................................................ 36 

8.4.1 ERRORS REVEALED BY HSIT ............................................................................................................................ 37 

8.4.2 INTERRUPT PROCESSING ................................................................................................................................. 38 

8.5 SOFTWARE-SOFTWARE INTEGRATION TESTING (SSIT) ........................................................................................ 38 

8.5.1 TOP-DOWN APPROACH ...................................................................................................................................... 38 

8.5.2 BOTTOM-APPROACH APPROACH ..................................................................................................................... 39 

8.5.3 REQUIREMENTS BASED SOFTWARE-SOFTWARE INTEGRATION TESTING ................................................ 40 

8.5.4 ERRORS REVEALED BY HSIT ............................................................................................................................ 40 

8.6 INTEGRATION TESTING GUIDELINES........................................................................................................................ 41 

8.6.1 TEST CASE TEMPLATE ....................................................................................................................................... 41 

8.6.2 TEST PROCEDURE TEMPLATE .......................................................................................................................... 41 

8.6.3 COMMON TESTING GUIDELINES ....................................................................................................................... 42 

8.7 TEST ALLOCATION STRATEGY .................................................................................................................................. 43 

8.7.1 FUNCTIONAL/LOGICAL GROUPING OF REQUIREMENT.................................................................................. 43 

8.7.2 REGRESSION TEST ............................................................................................................................................. 44 

8.8 RBT CATEGORIES ....................................................................................................................................................... 44 

8.8.1 TESTING REQUIREMENT WITH OPERATOR ‘>’ ................................................................................................ 44 

8.8.2 TESTING REQUIREMENT WITH OPERATOR ‘>=’ .............................................................................................. 45 

8.8.3 TESTING REQUIREMENT WITH OPERATOR ‘<’ ................................................................................................ 46 

8.8.4 TESTING REQUIREMENT WITH OPERATOR ‘<=’ .............................................................................................. 46 

8.8.5 TESTING MC/DC REQUIREMENT ....................................................................................................................... 47 

8.8.6 TESTING TIMER REQUIREMENT ........................................................................................................................ 48 

8.8.7 TESTING LATCHING REQUIREMENT ................................................................................................................. 48 

8.8.8 TESTING INTERPOLATION REQUIREMENT ...................................................................................................... 49 

8.8.9 TESTING HARDWARE INTERFACE .................................................................................................................... 50 

8.8.9.1 TESTING ANALOG REQUIREMENT ............................................................................................................ 50 

8.8.9.2 TESTING NVRAM REQUIREMENT .............................................................................................................. 51 

8.8.9.3 TESTING ARINC 429 REQUIREMENT (TYPICAL) ....................................................................................... 52 

8.8.9.4 TESTING DATA BUS COMMUNICATION REQUIREMENT (TYPICAL) ....................................................... 53 

8.8.9.5 TESTING DISCRETE INTERFACE REQUIREMENT .................................................................................... 54 

8.8.9.6 TESTING WATCHDOG REQUIREMENT ...................................................................................................... 54 

8.8.9.7 TESTING STACK REQUIREMENT ............................................................................................................... 54 

8.8.9.8 TESTING CRC REQUIREMENT ................................................................................................................... 55 

8.8.9.9 TESTING TIMING MARGIN REQUIREMENT ............................................................................................... 56 

8.8.9.10 TESTING POWER ON BUILT-IN-TEST REQUIREMENTS ......................................................................... 56 

8.8.9.11 TESTING SOFTWARE PARTITIONING REQUIREMENT .......................................................................... 57 

9.0 UNIT TESTING .................................................................................................................................................................. 58 

9.1 ETVX CRITERIA FOR UNIT TESTING .......................................................................................................................... 59 

9.2 UNIT TESTING OBJECTIVES ....................................................................................................................................... 59 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 8 of 130 

 

9.3 INPUTS AND OUTPUTS FOR UT ................................................................................................................................. 60 

9.4 UNIT TESTING GUIDELINES ........................................................................................................................................ 61 

9.4.1 COMMON TESTING GUIDELINE ......................................................................................................................... 61 

9.4.2 TEST CASE GUIDELINE ...................................................................................................................................... 62 

9.4.3 TEST PROCEDURE (OR SCRIPT) GUIDELINE ................................................................................................... 63 

9.4.4 TEST REPORT GUIDELINE ................................................................................................................................. 63 

9.4.5 TYPICAL ISSUES/ERRORS FOUND IN DESIGN DURING LOW LEVEL TEST .................................................. 64 

9.4.6 TYPICAL ISSUES/ERRORS FOUND WITHIN LOW LEVEL TEST ITSELF.......................................................... 64 

9.5 UNIT TEST CASE DESIGNING ..................................................................................................................................... 66 

9.5.1 OBJECTIVE ........................................................................................................................................................... 67 

9.5.2 LOW LEVEL TEST INPUTS / OUTPUTS .............................................................................................................. 68 

9.5.3 TEST CASE/PROCEDURE FORMAT ................................................................................................................... 68 

9.5.4 DATA DICTIONARY .............................................................................................................................................. 70 

9.5.5 TEST CASE SELECTION CRITERIA .................................................................................................................... 71 

9.5.5.1 REQUIREMENT BASED TEST CASES ........................................................................................................ 71 

9.5.5.2 ROBUSTNESS TEST CASES ....................................................................................................................... 71 

9.5.6 TEST ENVIRONMENT .......................................................................................................................................... 72 

9.5.7 TOOL QUALIFICATION ........................................................................................................................................ 72 

9.5.8 DATA AND CONTROL COUPLING ...................................................................................................................... 73 

9.5.8.1 DATA COUPLING .......................................................................................................................................... 73 

9.5.8.2 CONTROL COUPLING .................................................................................................................................. 73 

9.5.9 STRUCTURE COVERAGE ANALYSIS ................................................................................................................. 74 

9.5.10 REQUIREMENT COVERAGE ANALYSIS........................................................................................................... 75 

9.5.11 FORMAL TEST EXECUTION .............................................................................................................................. 75 

9.6 UNIT TESTING PROCESS ............................................................................................................................................ 76 

9.6.1 REVIEW AND ANALYSES PHASE ....................................................................................................................... 79 

9.6.2 UNIT TESTING PHASE ......................................................................................................................................... 80 

9.6.2.1 REQUIREMENTS BASED TEST COVERAGE ANALYSIS ........................................................................... 80 

9.6.2.1.1 ROBUSTNESS OR ABNORMAL TESTS ............................................................................................... 81 

9.6.2.1.2 NORMAL RANGE TESTS ...................................................................................................................... 81 

9.6.2.1.2.1 ARITHMETIC TESTS ..................................................................................................................... 82 

9.6.2.1.2.2 SINGULAR POINT TESTS ............................................................................................................. 83 

9.6.2.1.2.3 BOUNDARY VALUE TESTS .......................................................................................................... 84 

9.6.2.1.2.4 BASIS PATH TESTS ...................................................................................................................... 85 

9.6.2.2 STRUCTURAL COVERAGE (CODE COVERAGE) ANALYSIS .................................................................... 87 

9.6.2.2.1 STATEMENT COVERAGE .................................................................................................................... 88 

9.6.2.2.2 CONDITION COVERAGE. ..................................................................................................................... 89 

9.6.2.2.3 MULTIPLE CONDITION COVERAGE ................................................................................................... 89 

9.6.2.2.4 LOOP COVERAGE ................................................................................................................................ 90 

9.6.2.2.5 DECISION COVERAGE ......................................................................................................................... 91 

9.6.2.2.5 LOGICAL COMBINATORY OR MODIFIED CONDITION OR DECISION COVERAGE [MC/DC] .......... 91 

9.6.2.2.6 PATH COVERAGE ................................................................................................................................ 93 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 9 of 130 

 

9.6.2.2.7 OTHER TYPE OF COVERAGE’S .......................................................................................................... 94 

9.6.3 TECHNICAL CONTROL OR PEER REVIEW PHASE ........................................................................................... 95 

9.6.4 UNIT TEST PROCEDURE OR TEST SCRIPT CONTENT.................................................................................... 96 

9.7 ORGANIZATIONAL APPROACH TO UNIT TESTING ................................................................................................... 97 

9.7.1 TOP-DOWN APPROACH TO UNIT TESTING ...................................................................................................... 98 

9.7.1.1 ADVANTAGES .............................................................................................................................................. 99 

9.7.1.2 LIMITATIONS ................................................................................................................................................ 99 

9.7.2 BOTTOM-UP APPROACH TO UNIT TESTING .................................................................................................. 100 

9.7.2.1 ADVANTAGES ............................................................................................................................................ 101 

9.7.2.2 LIMITATIONS .............................................................................................................................................. 101 

9.7.3 ISOLATION APPROACH TO UNIT TESTING ..................................................................................................... 102 

9.7.3.1 ADVANTAGES ............................................................................................................................................ 102 

9.7.3.2 LIMITATIONS .............................................................................................................................................. 103 

10.0 INSPECTION OF THE OUTPUTS OF SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) ....................................... 104 

10.1 INSPECTION PROCESS .......................................................................................................................................... 104 

10.2 INSPECTION PROCESS GUIDELINES .................................................................................................................... 107 

10.3 PROBLEM REPORTING MECHANISM IN UNIT TESTING ....................................................................................... 108 

11.0 MISCELLEANEOUS TOPICS ....................................................................................................................................... 110 

11.1 REQUIREMENT TRACEABILITY .............................................................................................................................. 110 

11.2 SOFTWARE CHANGE REQUEST LIFE CYCLE ....................................................................................................... 111 

11.3 ASSEMBLY TESTING ............................................................................................................................................... 112 

11.4 SOURCE TO OBJECT ANALYSIS (FOR LEVEL A ONLY) ........................................................................................ 113 

11.5 APPENDIX E: DO-178B OUTPUTS OF SOFTWARE VERIFICATION PROCESS .................................................... 115 

11.5.1 VERIFICATION OF OUTPUTS OF SOFTWARE REQUIREMENTS PROCESS .............................................. 115 

11.5.2 VERIFICATION OF OUTPUTS OF SOFTWARE DESIGN PROCESS ............................................................. 116 

11.5.3 VERIFICATION OF OUTPUTS OF SOFTWARE CODING & INTEGRATION PROCESS ................................ 117 

11.5.4 VERIFICATION OF OUTPUTS OF INTEGRATION PROCESS ........................................................................ 118 

11.5.5 VERIFICATION OF OUTPUTS OF VERIFICATION PROCESS ....................................................................... 119 

12.0 DO-178B SW CERTIFICATION ..................................................................................................................................... 120 

12.1 CERTIFICATION AUDIT ............................................................................................................................................ 120 

12.1.1 BACKGROUND ................................................................................................................................................. 120 

12.1.2 PURPOSE OF THE REVIEW ............................................................................................................................ 120 

12.1.3 TYPES OF REVIEW .......................................................................................................................................... 121 

12.1.4 STAGES OF INVOLVEMENT & DO-178B OBJECTIVES ................................................................................. 121 

12.1.5 SOI READINESS CRITERIA ............................................................................................................................. 122 

12.1.6 TYPICAL AUDIT AGENDA ................................................................................................................................ 123 

12.1.7 TYPICAL AUDIT EXECUTION .......................................................................................................................... 124 

12.2 LESSONS LEARNT & COMMON ISSUES ................................................................................................................ 126 

12.2.1 ANALYSIS OF THE OUTCOME OF SOI AUDITS ............................................................................................. 126 

12.2.2 ISSUES & MITIGATION FOUND DURING THE AUDIT .................................................................................... 126 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 10 of 130 

 

1.0 SCOPE 

1.1 Document Identification 

The objective of this reference document is to introduce the beginners to the world of verification and 

validation of the software used in the real time embedded airborne avionics. This will also enable users of this 

document to understand the importance the quality of the software being currently being developed and/or being 

verified and finally validated with safety perspective, and thereby make an attempt to improve the quality of their 

software products. 

 

1.2 Intended audience 

The target audience for this technical reference document includes: 

� Software Verification and Validation Engineers (Testers); 

� Software Development Engineers (Designers and Developers); 

� Managers of software designers, developers and testers; 

� Software Technical Controllers. 

� Procurers of software products or products containing software; 

� Software Quality Assurance (SQA) managers and analysts; 

� Academic researchers, lecturers, and students; 

� Developers of related standards. 

 

1.3 Document Overview 

The topics covered in this reference document include: 

� Verification Process: A DO-178B perspective. 

� VEE life cycle model. 

� Reviews during VEE life cycle model. 

� Software Verification Strategy. 

� Software Testing Process. 

� Software Integration Testing (HSIT). 

� Unit Testing (UT). 

� Inspection Process 

� Assemble Testing 

� Source to Object Analysis 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 11 of 130 

 

2.0 INTRODUCTION 

The quality and reliability of software is often seen as the weak link in industry's attempts to develop new 

products and services. The last decade has seen the issue of software quality and reliability addressed through 

a growing adoption of design methodologies and supporting CASE tools, to the extent that most software 

designers have had some training and experience in the use of formalized software design methods.  

 

Unfortunately, the same cannot be said of software testing. Many developments applying such design 

methodologies are still failing to bring the quality and reliability of software under control. It is not unusual for 

50% of software maintenance costs to be attributed to fixing bugs left by the initial software development; bugs 

which should have been eliminated by thorough and effective software testing.  

 

Validation is a key activity that is essential to checking the correctness of the design and implementation of a 

software product against some pre-defined criteria. It aims at finding software defects (design and 

implementation errors) early in the development process to reduce the costs of removing these defects. These 

costs have been shown to increase with progress in the soft- ware development process. 

 

Verification & Validation activities typically occupy more than half of the overall system engineering efforts. This 

is particularly true for embedded systems that have to fulfill more stringent non-functional requirements than 

typical information systems. Verification is an ongoing activity throughout the development process, and 

validation is traditionally applied before the system becomes operational. Verification and Validation are typical 

and fundamental quality assurance techniques that are readily applied throughout the entire system 

development process.  

 

In fact, every single software engineering activity is geared towards two distinct dimensions only: attaining quality 

and reducing development costs and the two dimensions are interdependent. A high required level of quality 

usually leads to high development costs, although we cannot really say that in contrast high development costs 

inevitably lead to high quality. 

  

In the embedded domain, quality should receive very special attention, because such systems often perform 

critical tasks whose failure may lead to hazards and harm to assets and human life. Embedded real-time 

systems are therefore traditionally subject to stringent quality assurance methods, and these are expensive. 

Especially formal methods and formal verification are traditionally only applied in extremely safety-critical 

applications such as the avionics or such as nuclear power plants etc.  

 

Since more recently, embedded real-time systems are becoming more and more disposed in most technical 

domains and this is mainly through the increased integration of services over networks, competitive advantages 

of software over hardware, and the combination of devices and information systems.  

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 12 of 130 

 

3.0 SOFTWARE VERIFICATION PROCESS: A DO-178B PERSPECTIVE 

3.1 INPUT / OUTPUT REPRESENTATION 

 

3.2 PROCESS DOCUMENTS 

3.2.1 INPUTS 

� Software Requirements Specification [SRS]. 

� Preliminary Software Design Description [PSDD]. 

� Detailed Software Design Description [DSDD]. 

� Source Code. 

GUIDELINES & STANDARDS TEMPLATES CHECKLISTS 

� Regulatory Requirements [DO-178B]. 

� Review and Analysis Guide Lines. 

� Software Testing Guidelines. 

� Software Verification Cases & Procedure [SVCP]. 

� Software Verification Results [SVR]. 

� Problem Reports [PR]. 

 

� Peer Review Checklist for  

• Low-Level Tests. 

• Software-Software Integration Tests. 

• Hardware-Software Integration Tests. 

3.2.2 OUTPUTS 

� Software Verification Cases and Procedure [SVCP] document. 

� Software Verification Results [SVR] document. 

� Problem Reports [PR] document. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 13 of 130 

 

3.3 DOCUMENTS TRACEABILITY WITH DO-178B 

DOCUMENTS NAME PROCESS  NAME ADDRESSED DO-178B SECTIONS 

SRS Review Checklist 
REVIEW AND ANALYSIS PROCESS APPLIED 
TO  SYSTEM REQUIREMENTS ALLOCATED 
TO SOFTWARE (HIGH-LEVEL REQR) 

6.1.a, 6.1.e, 6.2.a, 6.2.d,6.2.e,6.3.1, 
11.13a 

PSDD Review Checklist 
REVIEW AND ANALYSIS PROCESS  APPLIED 
TO   SOFTWARE ARCHITECTURE 

6.1.c, 6.1.e, 6.2.d, 6.2.e, 6.3.3, 11.13a 

SDDD Review Checklist 
REVIEW AND ANALYSIS PROCESS APPLIED 
TO SOFTWARE LOW-LEVEL REQUIREMENTS 

6.1.b, 6.1.e, 6.2.d, 6.2.e, 6.3.2, 
11.13a 

Source Code Review Checklist 
REVIEW AND ANALYSIS PROCESS APPLIED 
TO SOURCE CODE 
 

6.1.d, 6.1.e, 6.2.d, 6.2.e, 6.3.4, 
6.4.4.3.c, 6.4.4.3.d, 11.13a 

Build Review Checklist 
REVIEW AND ANALYSES PROCESS APPLIED 
TO OUTPUTS OF THE INTEGRATION 
PROCESS 

6.1.e, 6.2.d, 6.2.e, 6.3.5, 11.13a 

Software Verification Cases 
and Procedures (SVCP),                        

 
SOFTWARE TESTING PROCESS  

11.13b, , 11.13c 

Software Verification Reports 
(SVR),                         

 
SOFTWARE TESTING PROCESS 

11.14 

Technical Control (TC) / Peer 
Review Checklist for Low-Level 
Tests. 

 
SOFTWARE TESTING PROCESS 

6.2.d, 6.2.e, 6.4.1, 6.4.2, 6.4.3.a, 
6.4.4.1, 6.4.4.2, 6.4.4.3,6.4.4.3.a, 
6.4.4.3.b 

Technical Control (TC) 
Checklist for                                      

SOFTWARE-SOFTWARE 
Integration Tests (SSIT) 

 
SOFTWARE TESTING PROCESS 6.2.d, 6.2.e, 6.4.1, 6.4.2, 6.4.3.b, 

6.4.4.1, 6.4.4.2, 6.4.4.3.a, 6.4.4.3.b 

Technical Control (TC) 
Checklist for                                                
HARDWARE-SOFTWARE 
Integration Tests (SSIT) 

 
SOFTWARE TESTING PROCESS 6.2.b, 6.2.c, 6.2.d, 6.2.e, 6.4.1, 6.4.2, 

6.4.3.c, 6.4.4.1, 6.4.4.2, 6.4.4.3 

Problem Reports 

 
APPLICABLE TO ALL PROCESSES OF SDLC. 
 

11.17 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 14 of 130 

 

4.0 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) 

Project life cycles process definitions will differ from project to project depending on system functionality, 

complexity, criticality level, re-use strategies, hardware availability, prototyping strategies etc. The process 

definitions, including activities, sequencing between processes and responsibilities are defined in the project 

software plans. 

The various activities which are undertaken when developing software are commonly modeled as a software 

development lifecycle. The software development lifecycle begins with the identification of a requirement for 

software and ends with the formal verification of the developed software against that requirement. The 

software development lifecycle does not exist by itself; it is in fact part of an overall product lifecycle. 

 

There are a number of different models for software development lifecycles. One thing which all models have 

in common is that at some point in the lifecycle, software has to be verified and also validated. This 

document outlines the V lifecycle model software development lifecycles, with particular emphasis on the 

verification and validation activities emphasizing on sequential lifecycle model. 

 

4.1 V Life Cycle Model 

The following set of lifecycle phases fits in with the practices of most avionics software development. 

CODING

REQUIREMENTS

PRELIMINARY
DESIGN

DETAILED
DESIGN

ACCEPTANCE

INTEGRATION

UNIT
TESTS

PRODUCT

ARCHITECTURE

DESIGN

                                  QUALIFICATION

               ACCEPTANCE

INTEGRATION
PLANNING

SOFTWARE

PRODUCT

 

 

Code and Unit Test phase, in which each 

component of the software is coded and tested 

to verify that it faithfully implements the detailed 

design. 

 

Integration Testing Phase, in which 

progressively larger groups of tested software 

components are integrated and tested until the 

software works as a whole. 

 

 

System Testing Phase, in which the software is integrated to the overall product and tested. 

 

Acceptance Testing Phase, where tests are applied and witnessed to validate that the software faithfully 

implements the specified requirements. A common mistake in the management of software development is to 

start by badly managing a development within a V or waterfall lifecycle model, which then degenerates into an 

uncontrolled iterative model. This is another situation which we have all seen causing a software development to 

go wrong. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 15 of 130 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 16 of 130 

 

4.2 Reviews During VEE Life Cycle Model Of SDLC 

Reviews provide an assessment of the accuracy, completeness and verifiability of the software 

requirements, software architecture and the source code. This activity is applied to the results of software 

development processes and software verification processes. The difference between reviews and analyses is 

that review provides qualitative assessment of correctness while analyses provide repeatable evidence 

of correctness. 

 

A review may consist of an inspection of an output of a process guided by a checklist or similar aid. An analysis 

may examine in detail the functionality, performance, traceability and safety implications of a software 

component, and its relationship to other components within the airborne system or equipment. 

 

 

 

VERIFICATION 

PLANNING 

 
PURCHASER’S REVIEWS 

PPR 
Planning 
Process 
Review 

PPR 
Planning 
Process 
Review 

FFR 
First 
Flight 
Review 

SRR 
Software 
requirements 
Review 

SRR 
Software 
requirements 
Review 

FDR 
First 
Delivery 
Review 

FDR 
First 
Delivery 
Review 

CODING 

SPDR 
Software 
Preliminary 
Design 
Review 

SDR 
Software 
Design 
Review 

SDR 
Software 
Design 
Review 

TRR 
Test 
Readiness 
Review 

PROJECT MANAGEMENT 

CONFIGURATION MANAGEMENT 

QUALITY ASSURANCE 

CERTIFICATION LIAISON 

CRC 
Compliance 
Review for 
first 
Certification 

INTERNAL REVIEWS 

ACCEPTANCE 

INTEGRATION 

UNIT 
TESTS 

FFR 
First 
Flight 
Review 

CRC 
Compliance 
Review for 
first 
Certification 

REQUIREMENTS 

PRELIMINARY 
DESIGN 

DETAILED 
DESIGN 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 17 of 130 

 

4.3 Data to Be Made Available For Reviews 

 

DATA  PPR SRR SPDR SDR TRR FDR FFR CRC 

DO-178B Software Level 
A 

B 
C D 

A 

B 
C D 

A 

B 

C D 
A 

B 

C D 
A 

B 

C D 
A 

B 
C D 

A 

B 
C D 

A 

B 
C D 

PSAC  Y  Y  Y                             

SDP Y Y Y C C C C C C C C  C C  C C C C C C C C C 

SVVP Y Y Y C C C C C C C C  C C  C C C C C C C C C 

SCMP Y Y Y C C C C C C C C  C C  C C C C C C C C C 

SQAP Y Y Y C C C C C C C C  C C  C C C C C C C C C 

SRS Y Y  C C  C C  C C  C C  C C  C C  C C  

SDS Y Y  C C  C C  C C  C C  C C  C C  C C  

SCS Y Y ÀÀÀÀ C C ÀÀÀÀ C C ÀÀÀÀ C C  C C  C C ÀÀÀÀ C C ÀÀÀÀ C C ÀÀÀÀ 

SRD    Y Y Y C C C C C  C C  C C C C C C C C C 

SPDD       Y Y Y Y Y  C C  C Y Y C C Y C C C 

SDDD          Y Y  C C  C Y  C C  C C  

Source Code             Y Y  Y Y Y C C Y C C C 

SUTP          Y Y  Y Y  Y Y  C C  C C  

SIP / SITP       Y Y  Y Y  Y Y  Y Y  C C  C C  

SAP / SATP    Y Y Y Y Y Y Y Y  Y Y  Y Y Y C C C C C C 

SUTR / SITR             Y Y  Y Y  C C  C C  

SATR             Y Y  Y Y Y C C C C C C 

SVVR / TC    Y Y Y Y Y Y Y Y  Y Y  Y Y Y C C C C C C 

STD    Y Y Y Y Y Y Y Y  Y Y  Y Y Y C C C C C C 

SCI             Y Y  Y Y Y C C C C C C 

PECI Y Y Y C C C C C C C C  C C  C C C C C C C C C 

PR Y Y Y Y Y Y Y Y Y Y Y  Y Y  Y Y Y Y Y Y Y Y Y 

SQAR Y Y Y Y Y Y Y Y Y Y Y  Y Y  Y Y Y Y Y Y Y Y Y 

SCMR    Y Y Y Y Y Y Y Y  Y Y  Y Y Y Y Y Y Y Y Y 

SAS                Y Y Y Y Y Y Y Y Y 

 

Y (Yes)  = The corresponding data need to be submitted to this review 

C   = Changes to this data need to be submitted to this review 

¬¬¬¬  = Requested, Y for PPR and C for the other reviews 

 

For level D, SPDD and SDDD's can be merged in one document SDD. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 18 of 130 

 

4.4 Verification and Validation 

It is the process of ensuring that software being developed or changed will satisfy functional and other 

requirement (validation) and each step in the process of building the software yields the right products 

(verification).  V&V refers to a set of activities that are aimed at making sure the software will function as 

required.  

 

The following diagram depicts the software development and verification phases inter-relationship. 

 

 

V&V are intended to be a systematic and technical evaluation of the software and associated products of the 

development and maintenance processes. Reviews and tests are done at the end of each phase of the 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 19 of 130 

 

development process to ensure software requirements are complete and testable and also the design, code, 

documentation and data satisfy those requirements. 

 

� Verification refers to the set of activities that ensure that correctly implements a specific function. 

� Validation refers to a different set of activities that ensure that software that has been built is traceable to 

client requirements. 

 

 

The purpose of verification is to detect 

defects in a product. Any intermediate 

work product or integrated subsystem, as 

well as the full, integrated system is a 

candidate subject for verification. 

Consequently, the practice of Continuous 

verification takes the stance that 

verification should be an ongoing task 

rather than being relegated to the end of 

the development life cycle.   

 

One important aspect of an early 

verification effort is deciding what 

verification strategy to use for each of the 

requirements and components of the 

overall system.  

 

From this point onwards, the document explains various aspects of software testing as part of verification and 

validation as mandated by DO-178B. This document mainly focuses on the following levels of testing: 

A. Hardware-Software Integration Testing (HSIT). 

B. Software-Software Integration Testing (SSIT). 

C. Unit Testing (UT). 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 20 of 130 

 

5.0 SOFTWARE VERIFICATION STRATEGY 

Verification of airborne software has two complementary objectives. 

01. To demonstrate that the software satisfies its requirements.  

02. To demonstrate with a high degree of confidence that errors which could lead to unacceptable failure 

conditions, as determined by the system safety assessment process, have been removed. 

 

To achieve the above objective, test cases should be requirements based so all testing activities provide 

verification of the requirements. Each test case defined in the Software Verification Cases & Procedures (SVCP) 

documents must be traced as follows: 

1. For HW-SW Integration: Trace to the Software Requirements Document (High level requirements) 

2. For SW Integration: Trace to the Software Requirements Document (High level requirements) and the 

Preliminary Software Design Description (Low level requirements) 

3. For Module Test: Trace to the Detailed Software Design Description (Low level requirements) 

 

Software verification can be optimized by starting with System Level Tests and then additionally develop 

Integration Tests and Unit Level Tests to achieve 100% Functional and 100% Structural Coverage.  

 

The basic test stop criteria applicable for all levels are defined below: 

1. 100% of Functional Coverage. 

2. 100% of Statement Structural Coverage. 

 

5.1 Software Test Priorities 

The priorities on the different type of tests are  

LEVEL SYSTEM TEST INTEGRATION TEST UNIT TEST 

Test Realization Priority 1 2 3 

Tests classes planned 

Real Time Functional 

Performances for 

External Interfaces 

Real Time Functional 

Performances for 

External Interfaces 

Functional 

Functional coverage of HIGH 

LEVEL requirements and 

Interfaces requirements 

Objective 100% 
Adding tests to reach 

100% coverage 

 

Adding tests to reach 

100% coverage 

Functional coverage of LOW 

LEVEL requirements 
- Objective 100% 

Adding tests to reach 

100% coverage 

 

This can be further simplified as 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 21 of 130 

 

 

5.2 Software Test Plan 

The realization of software test priorities can be kicked-off with preparation of the Software Test Plan [STP]. This 

STP provides the guidelines to verify a software product in a phased incremented [from unit test to system test] 

or decremented [system test to unit test] manner. Main contents of a typical STP under DO-178B certification 

requirement are as follows: 

SOFTWARE  

TEST ENVIRONMENT 

FORMAL QUALIFICATION  

TEST IDENTIFICATION 

DATA RECORDING, 

REDUCTION & ANALYSIS 

� Software items  

� Hardware and firmware items  

� Proprietary & Govt. rights  

� Installation, testing, and control  

 

 

 

 

 

 

 

 

 

 

� General test requirements                                      

• General test philosophy                                  

• General qualification method                             

• Software integration                                

• Regression tests                                         

• Object files used for tests                                 

� Test classes                                                  

� Test levels and Test definitions                                              

• Software Validation Test 

• HW/SW Integration testing                                        

• SW/SW integration testing                                                                          

• CSU testing (Low Level Test)                                           

• Static code analysis                                     

� Test schedule                                                

� Data recording  

� Test Results 

� Analysis of results 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 22 of 130 

 

Software test plan also contains standards that define the guidelines and procedures to be followed when 

conducting verification activities.  The following items direct the creation of a software test plan. 

5.2.1 Software Verification Process Inputs 

The inputs to the software verification process are as follows: 

� Interface Control Definition (ICD) 

� Requirements 

� System Requirements Document (SRD) consisting both Hardware and Software 

� Design 

� Software Design Description (SDD)   

� Functional Source Code    

5.2.2 Software Standards 

Verify adherence to the following standards: 

� RTCA DO-178B Section 6.0 . 

� Engineering Design Manual (EDM), Section 3.3 (Verification Activities) 

� Software Requirements Standards 

� Software Design Standards 

� Software Code Standards 

5.2.3 Independence Criteria 

� The verification team shall be independent of the engineering design teams.  

� Those responsible for performing the verification activities shall be identified. 

� Independence shall be maintained for software updates, software test creation and document reviews. 

This above satisfies the required verification independence in DO-178B for Level A criticality software. 

5.2.4 Review Procedures 

The following review procedures shall be applied: 

 

1. DOCUMENT WALKTHROUGH : For documents that do not have a specific document checklist 

• Read document to identify readability and content conflicts. 

• Complete a document walkthrough. 

• Include in the document folder for verification record purposes.  

• Deviations or problems identified or corrected using the problem reporting process as detailed in SCMP. 

2. CODE WALKTHROUGH  

• Create a module folder for relevant code module. 

• Complete a Software Module Inspection Checklist. 

• Deviations or problems identified or corrected using the problem reporting process as detailed in SCMP. 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 23 of 130 

 

3. UNIT TEST WALKTHROUGH 

• UT walkthroughs are conducted after each UT is complete to verify the results and test cases selected. 

• Create a module test folder. 

• Complete a Software Module Test Walkthrough Checklist. 

• Deviations or problems identified or corrected using the problem reporting process as detailed in SCMP. 

 

4. SOFTWARE INTEGRATION REVIEW 

A review of the integration process shall be accomplished by use of the Software Integration Checklist  

using the data defined below: 

� Linking data: The information required to link the software components into the integrated software. 

� Loading data: The information required to load the software into memory after integration. 

� Memory map: The layout of the memory after software has been loaded detailing relevant addresses. 

The following shall be considered as defined by the checklist: 

• Incorrect hardware address 

• Memory overlaps 

• Missing software components 

 

NOTE: The level of coverage shall also be determined by performing the following reviews and analysis 

1. Inspection or peer reviews of all procedures and tests sequences. 

2. Inspection of all test results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 24 of 130 

 

6.0 SOFTWARE TESTING PROCESS 

6.1 Software Testing Levels 

The software testing can be broken down into following levels as shown in the diagram. For the purpose of 

documentation following terms are used for segregation level of software functions between HSIT, SSIT and UT.  

01. Computer Software Configuration Item (CSCI): 

It denotes the group of software treated as a single entity by a configuration management system. 

02. Computer Software Component (CSC): 

It denotes functional block of software subset that is grouped for specific functionality. 

03. Computer Software Unit (CSU): 

It denotes lowest level public function software unit. 

 

The inter relationship between the CSCI; CSC and CSU are as shown below. 

 

6.2 Requirements Based Testing (RBT) 

The software verification test cases are to be created based on the software requirements 

specification. Test cases should be developed to verify correct functionality and to establish conditions that 

reveal potential errors. 

01. The first step is to develop functional and robustness tests to completely test and verify 

the implementation of the software requirements.  

02. The second step is to measure coverage (functional and structural). The measure of 

structural coverage will help provide an indication of the software verification campaign 

completion status.  

Integration Testing 

Unit Testing 

CSCI 

CSU 
CSU 

CSU 

CSC CSC CSC 

Computer Software Component 

Computer Software Unit 

Computer Software Configuration Item 

System Testing 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 25 of 130 

 

The tests stop criteria is not limited to a specific step but rather applied for all tests. For example, some high 

level requirements can be covered by integration tests, i.e., structural coverage are measured on all tests levels. 

Software requirements coverage analysis should determine what software requirements were not tested. 

Structural coverage analysis should determine what software structures were not exercised. 

 

 

6.3 Requirements Based HSIT Objectives 

The objective of HSIT is to ensure that software in the target computer will satisfy the high-level requirements. 

Typically HSIT should be limited to areas which require hardware interfaces like 

A. Hardware Interface Requirement. 

B. Power Up/Down sequence. 

C. NV RAM storage. 

D. Real Tim Process (Scheduler or Interupt) timing requirements. 

E. Protocol Testing (E.g. ARINC, Boot Loader) 

F. Worst Case Timing and Stack Margin Test. 

 

NOTE: It is noted that a lot of projects perform the integration test on the black box on System Test Environment 

(or closer). While the practice is not incorrect, the task calls out for more skills, environment availability and the 

constraints around it, thereby affecting the schedule, effort and cost. Performing SSIT and selected on HSIT 

could be best suited, subjected to the approvals of the certification plans. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 26 of 130 

 

The following shall be considered when writing tests to verify high level requirements: 

1. Does the high level requirement that you are defining a test case for meet the system requirement?  

To verify this: 

� Check the results from the review of the Software Requirements (SRD Checklist). 

� Trace back to the system requirements. 

2. Is the accuracy correct, if applicable? 

To verify this: 

� Check the results from the review of the Software Requirements. 

� Trace back to the system requirements. 

3. Is the requirement consistent with others? i.e. no conflicts or contradictions. 

To verify this: 

� Check the results from the review of the Software Requirements (SRD Checklist). 

� Trace back to the system requirements. 

4. Has compatibility with the target system been considered? 

This will typically be verified during the execution of informal tests. 

5. Does this requirement conform to the Software Requirements Standards? 

To verify this: 

� Check the results from the review of the Software Requirements (SRD Checklist). 

� Verify against the Software Requirements Standards. 

6. Does the requirement trace to the relevant system requirement? 

To verify this: 

� Check the results from the review of the Software Requirements (SRD Checklist). 

� Verify the software requirement traces to the system requirement from the SRD. 

7. Are any algorithms associated with this requirement accurate and have correct behaviour? 

To verify this: 

� Check the results from the review of the Software Requirements (SRD Checklist). 

� Run an informal test to verify algorithm. 

 

6.4 Requirements Based SSIT Objectives 

The objectives of requirements-based software/software integration testing is to ensure that software 

components interact correctly with each other and satisfy the software requirements and software architecture. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 27 of 130 

 

SW/SW Integration Test involves: 

1. Testing the interaction within the software components 

2. Testing the interaction between the software components 

 

The term “component” here refers to the functional block of software subset that is grouped for specific 

functionality. Example: Scheduler, Mode Logic, ARINC, NVM, BIT, Control Loop etc. 

 

 

The following shall be considered when writing tests to verify software architecture: 

1. Does the relevant piece of architecture that you are defining test cases for meet the software requirement?  

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Trace back to the software requirements. 

2. Software components and the relationships between them i.e. data and control flow shall be verified to be 

correct. This is achieved through Software Integration as detailed in these standards in section 5.5. 

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Conduct a Software Integration test (Section 5.5). 

3. Has compatibility with the target system been considered? 

This will typically be verified during the execution of informal tests. 

4. Does the relevant architecture conform to the Software Design Standards? 

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Verify against the Software Design Standards. 

5. Is the architecture as defined verifiable? i.e. Can you define test cases to adequately test this piece of 

software architecture as defined by these standards and the SVP. 

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Conduct informal tests to make sure the architecture is verifiable. 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 28 of 130 

 

6.5 INPUTS AND OUTPUTS FOR HSIT AND SSIT 

INPUTS OUTPUTS 

� Software Requirements Data 

� Software Design Data including Software Architecture 

� Testing Standards, Software Verification Plan 

� Hardware Interface document as applicable in project  

� Communication Interface document example, ARINC, CAN etc 

as applicable in project 

� Data Dictionary – Can be present as part of REQR.. / ICD etc 

� Software Verification Cases and Procedure Document 

� Test Case, Test Procedure 

� Traceability Matrix, HLR � Test Case, Test Case � Test 

Procedure. In some cases the test traces to LLR also 

� Test Report 

� Review Record/Checklist 

� Configuration records 

 

6.6 Requirements Based UT Objectives 

 

The objectives of Low level testing are: 

1. To verify compliance of each component with respect to its low -level requirements 

2. To verify the response of each component to normal as well as abnormal conditions 

3. To generate the measure of structural coverage as per DO-178B applicable level. It should be noted that the 

structural coverage can be attained at any level of test and not necessarily by low level test. 

 

As per DO-178B Section 6.4, if a test case and its corresponding test procedure are developed and executed for 

hardware/software integration tests or software integration testing and satisfy the requirements-based coverage 

and structural coverage, it is not necessary to duplicate the test for low-level testing. Substituting nominally 

equivalent low-level tests for high-level tests may be less effective due to the reduced amount of overall 

functionality tested. Hence the applicability of performing low level test should be documented in the SVP. 

 

The following shall be considered when writing tests to verify low level requirements: 

1. Does the low level requirement that you are defining a test case for meet the software requirement?  

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Trace back to the software requirements. 

2. Is the accuracy correct, if applicable? 

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Trace back to the software requirements. 

3. c) Is the requirement consistent with others? i.e. no conflicts or contradictions. 

To verify this: 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 29 of 130 

 

� Check the results from the review of the Software Requirements (SRD Checklist). 

� Trace back to the system requirements. 

4. Has compatibility with the target system been considered? 

This will typically be verified during the execution of informal tests. 

5. Does this requirement conform to the Software Design Standards? 

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Verify against the Software Design Standards. 

6. Does the requirement trace to the relevant software requirement? 

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Verify the low-level requirement traces to the software requirement from the SDD. 

7. Are any algorithms associated with this requirement accurate and have correct behaviour? 

To verify this: 

� Check the results from the review of the Software Design (SDD Checklist). 

� Run an informal test to verify algorithm. 

 

6.7 INPUTS AND OUTPUTS FOR UT 

INPUTS OUTPUTS 

FOR TEST CASE GENERATION:  

� Software Design Description (SDD). 

� Low Level Requirement (this is usually part of SDD document). 

� Data Dictionary. 

� Testing Standards, Software Verification Plan. 

� Any tool used for the traceability management (Test Case � LLR) 

example DOORS as applicable. 

 

FOR TEST PROCEDURE  GENERATION:  

� Test Case 

� Tool and its supporting environment for writing the test script if any 

(Example, Rational Test Real Time with Target Deployment 

Port on specific target) 

� Testing Standards, Software Verification Plan. 

� Software Verification Cases and Procedure 

Document. 

� Test Case. 

� Test Procedure or, Scripts 

� Traceability Matrix, LLR � Test Case, Test 

Case � Test Procedure. 

� Test Report. 

� Test Report (Pass/Fail status). 

� Coverage Report. 

� Review Record/Checklist. 

� Configuration records. 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 30 of 130 

 

7.0 SYSTEM TESTING 

 

 
 

 

 

A typical scenario of the system is as shown above. Any system accepts stimuli and gives a response. A 

stimulus is nothing but user inputs. A software system which consists of a set of transition rules is nothing but 

implementation of functionality in a methodical manner following stringent process. 

 

System testing is the process of testing carried out in an integrated hardware and software environment to verify 

the behavior of the complete system i.e. System Testing is the verification performed by integrating the 

Hardware and Software of a system simulating the actual use environment along with other system elements like 

target hardware, field data etc. 

 

System testing basically involves 3 basic steps and they are  

� Selecting the inputs,  

� Applying it to the system and  

� Verifying the outputs. 

 

 

System testing deals with the verification 

of the high level requirements specified in 

the System Requirements (Segment) 

Specification/Data. The verification tests 

involved in System Testing are conducted 

on the target hardware.  

 

The testing methodology used is Black 

Box testing (Module under test is treated 

as a black box (without seeing the code), 

to which input is applied and 

corresponding output is verified i.e. only 

functionality is checked).  

 

The test cases are defined based on the 

system and high level requirements only. 

 

 

Stimuli Response 
Software System 

 [A set of transition rules] 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 31 of 130 

 

7.1 ETVX Criteria for System Testing 

Entry Criteria: 

� Completion of Software Integration. 

 

Inputs: 

� System Requirements Document. 

� Software Requirements Data. 

� Software Design Document. 

� Software Verification Plan. 

� Software Integration Documents. 

 

Activities: 

� Define test cases and procedures based on the system level requirements. 

� Execute the tests on the defined hardware-software environment and obtain the results 

 

Exit Criteria: 

� Successful completion of the integration of the Software and the target Hardware. 

� Correct performance of the system according to the requirements specified. 

 

Outputs: 

� System Testing Reports. 

� Software Test Cases and Procedures [SVCP] and Software Verification Results [SVR]. 

 

7.2 System Testing Objectives: 

General: 

� Scaling and range of data as expected from hardware to software, 

� Correct output of data from software to hardware, 

� Data within specifications (normal range), 

� Data outside specifications (abnormal range/robustness), 

� Boundary data, 

� Correct acquisition of all data by the software, 

� Timing, 

� Interrupt processing, 

� Correct memory usage (addressing, overlaps, etc.), 

� State transitions. 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 32 of 130 

 

Cross channel communications 

All cross channel communication are verified. The considerations for this are: 

� Correct transmitting and receiving of data, 

� Correct composition of data packets, 

� Correct timing. 

Timing 

The timing constraints imposed on the system as defined in the System Specification are checked. 

 

Interrupt processing 

All interrupts are verified independently from the initial request through full servicing and onto completion. Test 

cases are specifically designed in order to adequately test interrupts and the following considerations are taken 

into account: 

� Conformity of the performance of each interrupt handling procedure to the requirements, 

� Correct assignment and handling of priorities for each interrupt, 

� Correct processing of the interrupts. 

 

Analysing whether a high volume of interrupt arrivals at critical junctures cause problems in system functioning 

or performance. 

 

All system tests and acceptance tests have to be executed in the target environment. This may be facilitated by 

developing and executing system tests in the host environment, then porting and repeating them in the target 

environment. Target dependencies may prevent system tests developed in a host environment from being 

repeated without modification in a target environment.  

 

Careful structuring of software and tests will minimize the effort involved in porting system tests between the host 

and target environments. However, fewer developers will be involved in system testing, so it may be more 

convenient to forgo execution of system tests in the host environment. The final stage of system testing, 

acceptance testing, has to be conducted in the target environment. Acceptance of a system must be based on 

tests of the actual system, and not a simulation in the host environment. 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 33 of 130 

 

8.0 INTEGRATION TESTING 

Integration testing is the process of testing in which, software and/or hardware components are combined and 

tested progressively until the entire system has been integrated. Integration is performed to verify the 

interactions between the modules of a software system. It deals with the verification of the high and low level 

software requirements specified in the Software Requirements Specification/Data and the Software Design 

Document.  

 

Integration Testing refers to the test cases that are made against the High Level Requirement i.e., Software 

Requirement Data (SRD). In some case the test cases are also based on the Software architecture. Integration 

Tests maps to DO-178B Hardware/Software Integration Testing and Software-Software Integration Testing as 

depicted in the diagram below. 

 

Software Design Description

Low Level Testing

Software Requirement Data

Architechture
Low Level 

Requirement

Data Dictionary
Detailed Design 

(algorithm)

SW/SW Integration Testing

HW/SW Integration Testing

Requirement Coverage Analysis

S
tr

u
c
tu

ra
l 

C
o

v
e

ra
g
e
 A

n
a

ly
s
is

 (
b
a
s
e
d

 

o
n

 a
n

y
 l
e
v
e
l 
o
f 

te
s
t)

 

 

It’s a systematic technique for constructing the program structure while conducting tests to uncover errors 

associated with interfacing. The objective is to take the unit tested modules and build a program structure that 

has been dictated by design. There are often tendencies to attempt non-incremented integration i.e. to construct 

the program using a big-bang approach. All modules are combined in advance and the entire program is tested 

as a whole and chaos usually results. A set of errors is encountered. Correction is difficult because isolation 

causes is complicated by the vast expansion of the entire program. Once these errors are corrected, new ones 

appear and the process continues in a seemingly endless loop. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 34 of 130 

 

Incremental integration is the antithesis of the big bang approach. The program is constructed and tested in 

small segments, where errors are easier to isolate and correct. Interfaces are more likely to be tested completely 

and a systematic test approach may be applied. There are some incremental methods like The integration tests 

are conducted on a system based on the target processor. The methodology used is Black Box testing. Either 

bottom-up or top-down integration can be used. Test cases are defined using the high level software 

requirements only. 

 

Software integration may also be achieved largely in the host environment, with units specific to the target 

environment continuing to be simulated in the host. Repeating tests in the target environment for confirmation 

will again be necessary. Confirmation tests at this level will identify environment specific problems, such as 

errors in memory allocation and de-allocation. The practicality of conducting software integration in the host 

environment will depend on how much target specific functionality there is. For some embedded systems the 

coupling with the target environment will be very strong, making it impractical to conduct software integration in 

the host environment. Large software developments will divide software integration into a number of levels. The 

lower levels software integration could be based predominantly in the host environment, with later levels of 

software integration becoming more dependent on the target environment. 

 

If software only is being tested then it is called Software Software Integration Testing [SSIT] and if both hardware 

and software are being tested then it is called Hardware Software Integration Testing [HSIT]. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 35 of 130 

 

8.1 ETVX Criteria for Integration Testing 

Entry Criteria: 

� Completion of Unit Testing 

Inputs: 

� Software Requirements Data 

� Software Design Document 

� Software Verification Plan 

� Software Integration Documents 

Activities: 

� Define test cases and procedures based on the High and Low level requirements 

� Combine low-level modules builds that implement a common functionality 

� Develop a test harness 

� Test the build 

� Once the test is passed, the build is combined with other builds and tested until the system is 

integrated as a whole. 

� Re-execute all the tests on the target processor based platform, and obtain the results 

Exit Criteria: 

� Successful completion of the integration of the Software module on the target Hardware 

� Correct performance of the software according to the requirements specified 

Outputs: 

� Integration test reports 

� Software Test Cases and Procedures [SVCP]. 

8.2 I/O for Integration Testing 

INPUTS OUTPUTS 

� Software Requirements Data 

� Software Design Data including Software Architecture 

� Testing Standards, Software Verification Plan 

� Hardware Interface document as applicable in project  

� Communication Interface document example, ARINC, CAN etc 

as applicable in project 

� Data Dictionary – Can be present as part of REQR.. / ICD etc 

� Software Verification Cases and Procedure Document 

� Test Case, Test Procedure 

� Traceability Matrix, HLR � Test Case, Test Case � Test 

Procedure. In some cases the test traces to LLR also 

� Test Report 

� Review Record/Checklist 

� Configuration records 

 

8.3 Integration Testing Objectives 

� Correct with software requirements � Correct control flow � Correct memory usage. 

� Correct data flow � Correct timing  



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 36 of 130 

 

8.4 Hardware-Software Integration Testing (HSIT) 

It is the testing of the Computer Software Components [CSC] operating within the target computer environment, 

and on the high-level functionality. It concentrates on the behavior of the integrated software developed on the 

target environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hardware software integration deals with the verification of the high level requirements.  All tests at this level are 

conducted on the target hardware. 

1. Black box testing is the primary testing methodology used at this level of testing.  

2. Define test cases from the high level requirements only 

3. Test must be executed on production standard hardware (on target) 

 

Run Test

Select and Setup for
Test

Hardware/Software

Integration Test

Results

PR Pass

Yes

No

Update SVR

ECP

Accept

Reject



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 37 of 130 

 

Items to consider when designing test cases for HW/SW Integration: 

1. Correct acquisition of all data by the software. 

2. Scaling and range of data as expected from hardware to software. 

3. Correct output of data from software to hardware. 

4. Data within specifications (normal range). 

5. Data outside specifications (abnormal range). 

6. Boundary data. 

7. Interrupts processing. 

8. Timing. 

9. Correct memory usage (addressing, overlaps etc.). 

10. State transitions. 

 

8.4.1 Errors Revealed by HSIT 

This testing method should concentrate on error sources associated with the software operating within the target 

computer environment, and on the high-level functionality. The objective of requirements-based 

hardware/software integration testing is to ensure that the software in the target computer will satisfy the high-

level requirements.  

 

Typical errors revealed by this testing method include: 

� Incorrect interrupt handling. 

� Failure to satisfy execution time requirements. 

� Incorrect software response to hardware transients or hardware failures, for example, start-up 

sequencing, transient input loads and input power transients. 

� Data bus and other resource contention problems, for example, memory mapping. 

� Inability of built-in test to detect failures. 

� Errors in hardware/software interfaces. 

� Incorrect behavior of feedback loops. 

� Incorrect control of memory management hardware or other hardware devices under software control. 

� Stack overflow. 

� Incorrect operation of mechanism(s) used to confirm the correctness and compatibility of field-loadable 

software. 

� Violations of software partitioning. 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 38 of 130 

 

8.4.2 Interrupt Processing 

All interrupts will be verified independently from initial request through full servicing and onto completion. Test 

cases will be specifically designed in order to adequately test interrupts. The following will be considered when 

designing test cases for interrupts: 

1. Does performance of each interrupt handling procedure conform to requirements? 

2. Are interrupt priorities correctly assigned and handled? 

3. Is processing for each interrupt correctly handled? 

4. Does a high volume of interrupts arriving at critical times create problems in function or performance? 

 

8.5 Software-Software Integration Testing (SSIT) 

It is the testing of the Computer Software Component operating within the host / target computer environment 

while simulating the entire system [other CSC’s], and on the high-level functionality. It concentrates on the 

behavior of a CSC in a simulated host / target environment. The approach used for Software Integration can be 

a top-down, a bottom-up approach or a combination of both. 

8.5.1 Top-Down Approach 

 

 

 

It’s an incremental approach to construction of the 

program structure. Modules are integrated by moving 

downward through the control hierarchy beginning with 

the main control module. Modules subordinate to the 

main control module are incorporated into the structure in 

either a depth-first or breadth-first manner. 

Depth-first integration integrates all modules on a major 

control path of the structure as displayed in the diagram:  

 

Selection of a major control path is application specific. 

For example, selecting the left hand path, modules M1, 

M2 and M5 would be integrated first. Next would be M8 

or (if necessary for the proper functioning of M2) M6 

would be integrated. Then, the central and right-hand 

control paths are built. Breadth-first integration 

incorporates all modules directly subordinate at each 

level, moving across the structure horizontally. In the 

diagram above, modules M2, M3 and M4 would be 

integrated first. The next control level, M5, M6 and so on, 

follows.  

In this approach the module integration process is performed in a series of five steps: 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 39 of 130 

 

 

1. The main control module is used as a test driver and the stubs are substituted for all modules directly 

subordinate to the main control module. 

2. Depending on the integration approach selected (i.e. depth-or breadth first) the subordinate stubs are 

replaced one at a time with actual modules. 

3. Tests are conducted as each module is integrated. 

4. On completion of each set of tests, another stub is replaced with real module. 

5. Regression testing may be conducted to ensure that new errors have not been introduced. 

 

The process continues from step2 until the entire program structure is built. The top-down strategy sounds 

relatively uncomplicated, but in practice, logistical problems arise. The most common of these problems occurs 

when processing at low levels in the hierarchy is required to adequately test upper levels. Stubs replace low-

level modules at the beginning of top-down testing and therefore no significant data can flow upward in the 

program structure. 

 

The tester is left with these choices 

1. Delay many tests until stubs are replaced with actual modules. 

2. Develop stubs that perform limited functions that simulate the actual module. 

3. Integrate the software from the bottom of the hierarchy upward. 

 

The first approach causes us to lose some control over correspondence between specific tests and incorporation 

of specific modules. This can lead to difficulty in determining the cause of errors which, tends to violate the highly 

constrained nature of the top down approach. The second approach is workable but can lead to significant 

overhead, as stubs become increasingly complex. 

 

8.5.2 Bottom-Approach Approach 

Bottom-up integration begins construction and testing with modules at the lowest level in the program structure. 

In this process the modules are integrated from the bottom to the top. In this approach processing required for 

the modules subordinate to a given level is always available and the need for the stubs is eliminated.  

 

This integration test process is performed in a series of four steps 

1. Low-level modules are combined into clusters that perform a specific software sub-function. 

2. A driver is written to co-ordinate test case input and output. 

3. The cluster or build is tested. 

4. Drivers are removed and clusters are combined moving upward in the program structure. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 40 of 130 

 

Build 1

Build 2

Build 3

 

As integration moves upward, the need 

for separate test drivers lessens. In the 

fact, if the top two levels of program 

structure are integrated top-down, the 

number of drivers can be reduced 

substantially and integration of clusters 

is greatly simplified. Integration follows 

the pattern illustrated below. Modules 

are combined to form builds 1, 2 and 3. 

Each of the builds is tested using a 

driver. As integration moves upward, 

the need for separate test drivers 

lessens. 

 
Note: If the top two levels of program structure are integrated Top-down, the number of drivers can be 

reduced substantially and integration of builds is greatly simplified. 

 

8.5.3 Requirements based Software-Software Integration Testing  

This testing method should concentrate on the inter-relationships between the software requirements, and on 

the implementation of requirements by the software architecture. The objective of requirements-based software 

integration testing is to ensure that the software components interact correctly with each other and satisfy the 

software requirements and software architecture. This method may be performed by expanding the scope of 

requirements through successive integration of code components with a corresponding expansion of the scope 

of the test cases.  

 

8.5.4 Errors Revealed by HSIT 

Typical errors revealed by this testing method include: 

� Incorrect initialization of variables and constants. 

� Parameter passing errors. 

� Data corruption, especially global data. 

� Inadequate end-to-end numerical resolution. 

� Incorrect sequencing of events and operations. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 41 of 130 

 

8.6 Integration Testing Guidelines 

8.6.1 Test Case Template 

The test case template should contain: 

• Test Case Identifier: Unique ID • Initial Condition: Defines the initial state of test setup & environment 

• Test Case Author/Version/Date:  • Expected Output(s) 

• Test Type: Normal/Robustness • Pass/Fail Criteria 

• Test Description • Requirement(s) Traced 

• Input(s)  

Sample format: 

T
C

 I
d

e
n

ti
fi

e
r 

T
e

s
t 

T
y
p

e
 

D
e

s
c

ri
p

ti
o

n
 

In
p

u
t 

O
u

tp
u

t Initial 
Conditi
on(s) 

Expected 
Result(s) 

Pass/Fail 
Criteria 

R
e

q
u

ir
e

m
e
n

ts
 

T
ra

c
e

d
 

Case 1 Normal 

<To mention the high level 
description / objective of test 
without repeating the 
input/output values> 

Input 1 
Input 2 

Output 1 
Output 2 

  
See Output 
Signals 

actual results 
equal 
expected 
result 

Req-1 

Case 2 Normal 

Example,  
Tests the timer reset condition 
Tests for FT condition for 
MC/DC combination on Input 1, 
Input 2 

      
See Output 
Signals 

actual results 
equal 
expected 
result 

Req-1 

Case 3 Normal         
See Output 
Signals 

actual results 
equal 
expected 
result 

Req-2 

Case 4 Robustness         
See Output 
Signals 

actual results 
equal 
expected 
result 

Req-3 

Note: The Author/Version/Date can be maintained by CM tool usage and need not be part of template 

itself) 

8.6.2 Test Procedure Template 

The test procedure in terms of environment setup is usually documented in Software Cases and Procedure 

Document based on test environment. The test procedure itself is usually implemented as script based on the 

test case. It is acceptable to have the test procedure implementing multiple test cases. The traceability of test 

procedure to test case and vice-versa should be maintained. The test procedure template should contain: 

• Test Procedure Name (or ID) 

• Test Procedure Author/Version/Date: (Note the Author/Version/Date can be maintained by CM tool usage 

and need not be part of template itself) 

• Test Environment 

• Test Case(s) Traced 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 42 of 130 

 

8.6.3 Common Testing Guidelines 

01. The initial condition of the output should be of inverted than the expected result in the test case. 

02. When checking the output, ensure that output values are toggled in different test case to prove the affect 

of input 

03. For a float input, values should be given greater by 1 LSB (or possible constraint due to HW) at the 

operator condition. The floating point precision should be 0.000001 or, as defined by project plan 

04. The float comparison on the target computer should be given as 95% of expected value 

05. For data input from external analog sensor simulator, LSB should be equal to the minimum step possible 

06. Tolerances for analog values should be noted either in requirement or, software architecture as this will be 

used for Pass/Fail criteria for analog signals 

07. For certain requirement, it is acceptable to modify the software, example for worst case timing 

requirement, it may be required to toggle any output pins, but this should be documented and made part of 

test procedure 

08. The requirement based test should cover the MC/DC combination of requirement itself. For the cases not 

possible to achieve requirement coverage at MC/DC level, justification should be given. The MC/DC 

coverage of requirement should be irrespective of Software Level. Note that this requirement should be 

agreed in the project plan. 

09. For the test covering the boundary value of the input should be categorized as “Normal Range” test. For 

the test covering the outside the boundary value of the data dictionary of the input, should be categorized 

as “Robustness Range” test.  

10. For the Software Requirement based test, data type should not be based on source code and design but 

based on requirement and/or Interface control document. For Low Level requirement based testing,  data 

type should be based on design and not to the source code. 

11. The testing on the relational operators should be tested on the boundary above or below the relation 

based on the accuracy of data type (usually 1 LSB for integer and least precision supported on target for 

float) 

12. Additional robustness cases can include: 

i. Setting of invalid data like data being stale, drop-outs, data outside the range and/or tolerance 

ii. Periodic warm start cases, and warm/cold starts, exceptions 

iii. Transition of various software mode of operation intermittently including invalid/valid transitions 

iv. Creating scenarios of arithmetic exceptions 

v. Forcing overrun cases on memory, timing 

vi. Memory corruption cases, example power shutdown while forcing SW to write data to NVM 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 43 of 130 

 

8.7 Test Allocation Strategy 

Test allocation plays an important role in terms of overall testing. The test allocation should meet at least the 

following requirement: 

1. Functional/Logical grouping of requirement  

2. Human Resource – Allocation based on skill 

3. HW/SW Resource – Test related to usage of console Vs standalone for optimal usage of hardware 

4. Prioritization of testing the functionality – Test the input interface first then communication then system 

functionalities and so on, again should be assessed on the schedule, example Safety of Flight Requirement 

to be completed first and so on 

5. Regression test allocation 

6. Resource deployment plan – Number of resources Vs Timeline 

 

Point 2 through 6 are subjective to the program need, more focus in the further section is made on approach of 

Functional/Logical grouping of requirement 

 

8.7.1 Functional/Logical grouping of requirement 

First and foremost, a thorough review of the complete requirement is required, with presence of stakeholders – 

V&V Lead, Developer with System experience to create the test specification. A single test specification may 

contain multiple test cases. The test procedure, usually in form of script can be created to trace single or, 

multiple test cases. The test specification to test case to test procedure relationship is depicted below. 

 

 

 

 

 

 

 

 

 

 

 

 

A sample of test specification (also called as grouping or scenarios in some cases) is defined as follows: 

Test Specification 

Test Case 1 
Test Case 2 

Test Case 3 
and so on 

Test Procedure 1 Test Procedure 2 
and so on 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 44 of 130 

 

<ID> Test Specification Brief approach Test Environment Test Method 

TI-001 1. Power Up Test  

Eg. Target Board with Test 
Console 

Target board with Emulator etc 

SW Integration Test, HW/SW 
Integration Test, Inspection, or 
Analysis. 

TI-002 2. Discrete Input Test    

TI-003 3. Communication Test    

 3.1 Bus Selection    

 3.2 ARINC 429 Input Bus1    

 3.3 ARINC 429 Input Bus2    

 3.4 ARINC 429 Output Bus1    

 3.5 ARINC 429 Output Bus2    

TI-004 4. System Mode and State Test    

 And so on    

 

8.7.2 Regression Test 

The need of regression test is used to provide confidence of deliverable or, validate any ‘change’ impact on the 

overall functionality. 

• To check the basic functionalities (‘basic’ needs to be decided) whenever there is any change in SW 

• Any change in development or, test environment etc 

 

8.8 RBT Categories 

8.8.1 Testing Requirement with Operator ‘>’ 

Requirement:  

� Software shall set TO1 = TRUE when [(TIN1 > 30.0)] 

Test Approach:  

• Assume that the data range of TIN1 is [-10.0 to 200.0] 

• Note the toggling status of TO1 in terms of arranging the input 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 45 of 130 

 

Test Type Description TIN1 TO1 

Normal Test for TIN1 with 1 LSB* greater than operator condition value 30.000001 TRUE 

Normal Test for TIN1 at operator condition value 30.0 FALSE 

Normal Test for TIN1 for maximum limit 200.0 TRUE 

Normal Test for TIN1 for minimum limit -10.0 FALSE 

Robustness Test for TIN1 for more than maximum limit 200.000001 TRUE 

Robustness Test for TIN1 for less than minimum limit -9.999999 FALSE 

* Note that 1 LSB should be equal to 1 for integer data type and float precision in case of float data type 

8.8.2 Testing Requirement with Operator ‘>=’ 

Requirement:  

� Software shall set TO1 = TRUE when [(TIN1 >= 30.0)] 

Test Approach:  

• Assume that the data range of TIN1 is [-10.0 to 200.0] 

Test Type Description TIN1 TO1 

Normal Test for TIN1 with 1 LSB greater than operator condition value 30.000001 TRUE 

Normal Test for TIN1 1LSB less than operator condition value 29.999999 FALSE 

Normal Test for TIN1 at operator condition value 30.0 TRUE 

Normal Test for TIN1 for minimum limit -10.0 FALSE 

Normal Test for TIN1 for maximum limit 200.0 TRUE 

Robustness Test for TIN1 for less than minimum limit -9.999999 FALSE 

Robustness Test for TIN1 for more than maximum limit 200.000001 TRUE 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 46 of 130 

 

 

8.8.3 Testing Requirement with Operator ‘<’ 

Requirement:  

� Software shall set TO1 = TRUE when [(TIN1 < 30.0)] 

Test Approach:  

• Assume that the data range of TIN1 is [-10.0 to 200.0] 

• Note the toggling status of TO1 in terms of arranging the input 

Test Type Description TIN1 TO1 

Normal Test for TIN1 with 1 LSB less than operator condition value 29.999999 TRUE 

Normal Test for TIN1 at operator condition value 30.0 FALSE 

Normal Test for TIN1 for minimum limit -10.0 TRUE 

Normal Test for TIN1 for maximum limit 200.0 FALSE 

Robustness Test for TIN1 for less than minimum limit -9.999999 TRUE 

Robustness Test for TIN1 for more than maximum limit 200.000001 FALSE 

 

8.8.4 Testing Requirement with Operator ‘<=’ 

Requirement:  

� Software shall set TO1 = TRUE when [(TIN1 <= 30.0)] 

Test Approach:  

• Assume that the data range of TIN1 is [-10.0 to 200.0] 

Test Type Description TIN1 TO1 

Normal Test for TIN1 with 1 LSB less than operator condition value 29.999999 TRUE 

Normal Test for TIN1 1LSB more than operator condition value 30.000001 FALSE 

Normal Test for TIN1 at operator condition value 30.0 TRUE 

Normal Test for TIN1 for maximum limit 200.0 FALSE 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 47 of 130 

 

Test Type Description TIN1 TO1 

Normal Test for TIN1 for minimum limit -10.0 TRUE 

Robustness Test for TIN1 for more than maximum limit 200.000001 FALSE 

Robustness Test for TIN1 for less than minimum limit -9.999999 TRUE 

 

8.8.5 Testing MC/DC Requirement 

Note that this requirement is irrespective of Level of software and subjected to agreement in software 

plan. 

Requirement:  

� Software shall set TM1 = TRUE when [(TX1 = TRUE) AND (TY1 > 30.0)] 

Test Approach:  

• Ensure that TM1 = FALSE as initial condition 

• When checking the output, TM1, ensure that o/p values are toggled in different test case 

• Since TY1 is a float i/p, values should be checked for greater by 1 LSB (or possible constraint due to HW).  

Test Type Description (TX1 = TRUE) (TY1 > 30.0) TM1 

Normal 
Verifies the independence of TY1 on 

the output 
TX1 = TRUE FALSE, TY1 = 30.0 FALSE 

Normal 
Verifies that the output signal values 

are produced given the input values 
TX1 = TRUE TRUE, TY1 = 30.0 + 1 LSB TRUE 

Normal 
Verifies the independence of TX1 on 

the output 
TX1 = FALSE TRUE, TY1 = 30.0 + 1 LSB FALSE 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 48 of 130 

 

8.8.6 Testing Timer Requirement 

Requirement:  

� Software shall set TY1 = TRUE when [TX1 = TRUE] for 300 ms. 

Test Approach:  

• Check for output with the shortest timer/counter pulse for inactive state 

• Check for output with the timer/counters: 

o Make TX1 = TRUE for ‘half-time duration’ i.e, 150 ms, then make TX1 = FALSE for 150 duration 

o Timer is active for about half the timer/counter value,  

o Inactive for the duration of the timer/counter value and then  

o Active for the duration of the timer/counter value 

o Active for the duration + some tolerance (eg. 10 ms), of the timer/counter value 

This is ensure that timer reset is properly taken care in the software before testing for full duration 

Test Type Description TX1 TY1 

Normal Test the output with timer for shortest pulse for inactive state FALSE for 1 ms FALSE 

Normal 

Timer is active for about half the timer/counter value, inactive for 

the duration of the timer/counter value and then active for the 

duration of the timer/counter value, and then active for the duration 

of timer/counter + additional count 

TRUE for 150 ms 

FALSE for 300 ms 

TRUE for 300 ms 

TRUE for 310 ms 

FALSE 

FALSE 

TRUE 

TRUE 

8.8.7 Testing Latching Requirement 

Requirement:  

� Software shall set ‘TX Failed’ = TRUE when ‘RX Invalid’ = TRUE for 100 ms. 

� Software shall latch ‘TX Failed’ in RAM. 

Test Approach:  

• First part of requirement should be verified as per ‘Testing Timer Requirement’ 

• For the latching of data in RAM, it should be verified as: 

o Test that latched data is set when the input condition is set for setting the latch 

o Test that latched data is set even when the input condition is not-set, for duration of 

timer/counter 

o Power Cycle the target board (or reset on other simulated environment) 

o Check that latch data is reset 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 49 of 130 

 

Test Type Description RX Invalid TX Invalid 

Normal Test the output with timer for shortest pulse for inactive state FALSE for 1 ms FALSE 

Normal 

Timer is active for about half the timer/counter value, inactive for 

the duration of the timer/counter value and then active for the 

duration of the timer/counter value, and then active for the 

duration of timer/counter + additional count 

TRUE for 50 ms 

FALSE for 100 ms 

TRUE for 100 ms 

TRUE for 110 ms 

FALSE 

FALSE 

TRUE 

TRUE 

Normal Check that ‘TX Failed’ is latched as TRUE 
FALSE for 100 ms 

FALSE for 110 ms 

TRUE 

TRUE 

Normal 
Verifies that latched signal ‘TX Failed’ is cleared upon power 

cycle 
FALSE FALSE 

 

8.8.8 Testing Interpolation Requirement 

Requirement:  

� Software shall calculate the velocity schedule from the Airspeed using the linear interpolation as shown 

below: 

Airspeed (knots) Velocity Schedule (mm/sec) 

<0 5.451 

0 9.681 

160 9.681 

400 2.766 

>400 0.545 

Test Approach:  

• Check that output in terms of float can be checked as part of any message could be checked, else can 

check this as part of interpolation module tests 

• For every point on Airspeed, check for +/-1 LSB of input (Airspeed) 

• Assumed LSB = 1 for Airspeed, needs to seen as per requirement 

• Assumed that Airspeed range as per the data dictionary (or ICD) range = 0 to 600 knots 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 50 of 130 

 

Test Type Description 
Input - 

Airspeed(knots) 

Output - 

Velocity 

Schedule 

(mm/sec) 

Robustness 
Verifies the Velocity Schedule with Airspeed <0 (MIN Limit -

1) 
-1 5.431 

Normal Verifies the Velocity Schedule with Airspeed = 0 0 9.681 

Normal Verifies the Velocity Schedule with Airspeed = 159 159 9.681 

Normal Verifies the Velocity Schedule with Airspeed = 160 160 9.681 

Normal Verifies the Velocity Schedule with Airspeed = 399 399 9.681 

Normal Verifies the Velocity Schedule with Airspeed = 400 400 9.681 

Normal Verifies the Velocity Schedule with Airspeed = 401 401 0.545 

Normal Verifies the Velocity Schedule with Airspeed = Max limit 600 0.545 

Robustness 
Verifies the Velocity Schedule with Airspeed = 601, Max 

limit + 1 
601 0.545 

8.8.9 Testing Hardware Interface 

8.8.9.1 Testing Analog Requirement 

Requirement:  

� Software shall interface 28V DC power input via 12 bit ADC sampled at 1 ms. 

Test Approach:  

• Assume that DC power range = 0 to 28V, hence: 

o 0V = 0 

o 28V = 0xFFF on 12 bit ADC 

o 1 LSB = 28/0xFFF V 

• Assume that SW scheduler runs @ 1ms 

Test Type Description Voltage Input at source Expected voltage 

Normal Test for minimum voltage at input 0V for 1ms 0V +/- 1LSB 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 51 of 130 

 

Test Type Description Voltage Input at source Expected voltage 

Normal Test for intermediate voltage at input 14V for 1ms 14V +/- 1LSB x 14 

Normal Test for maximum voltage at input 28V for 1ms 28V +/- 1LSB x 28 

 

8.8.9.2 Testing NVRAM Requirement 

Requirement:  

� When commanded, software shall set store the LVDT-1 offset in NVRAM if it is within the range 0-10 mm.  

� Software shall send a message on ARINC Label 110 with: 

� Bit 10 => Status offset validity (data range between 0-10 mm) and,  

� Software shall send a message on ARINC Label 120 with the value of LVDT-1 offset, if data is written 

properly in NVRAM 

� Unless commanded, software shall set use the LVDT-1 offset from NVRAM after power-up 

Test Approach:  

Note: Focus of the section is to make the test case related to NVRAM being written – [A], verified from an output 

regarding the data write status – [B], and retrieved properly next time after power-up – [C]. 

Typical issues of an NVRAM implementation: 

• If for any reason, SW does not able to write, it times-out without indicating properly 

• Usually NVRAM implementation are done on walk-through, i.e, every time the new data is getting written 

in NVRAM, previous location is erased, and then data gets written to next available location.  

• Robustness -> On 100-200 power-up, data missed to be retrieved. This typically reveals the protocol issue 

on NVRAM read at power up. 

• Robustness ->The number of times the data should be forced to written should be based on forcing the 

data to be written ‘at least once’ throughout the NVRAM to prove wrap-around design for choosing new 

location is properly implemented 

Test Type Description 
Input - LVDT-1 

Offset 

Expected 

Output 

Normal 
Verifies the LVDT-1 offset out of-range write operation 

of NVRAM 
0mm 

ARINC Label 110, 

Bit 10 = 0 

Label 120 data = 0 

Normal Power up the board NA 
ARINC Label 110, 

Bit 10 = 0 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 52 of 130 

 

Test Type Description 
Input - LVDT-1 

Offset 

Expected 

Output 

Label 120 data = 0 

Normal 
Verifies the LVDT-1 offset in-range write operation of 

NVRAM 
1mm 

ARINC Label 110, 

Bit 10 = 1 

Label 120 data = 1 

Normal Power up the board NA 

ARINC Label 110, 

Bit 10 = 1 

Label 120 data = 1 

 
Repeat the above two step for 2 – 9 and out-of-range 

case for 10 
  

Robustness Tests 200 power up to verify the NVRAM data retrieval   

Robustness 

Based on the NVRAM design architecture repeat the 

in-range case of NVRAM write to cover the complete 

range of sector being written and wrap-backed. 

  

8.8.9.3 Testing ARINC 429 Requirement (Typical) 

Requirement:  

� Software shall receive the ARINC Label 314, XY Position as defined below. 

Message 

Name 

Label 

(Bits 1-8) 
Direction 

Speed 

(kbps) 

Update 

interval 

(ms) 

Type 
Eng 

Unit 

Eng 

Unit 

Min 

Eng 

Unit 

Max 

XY Position 314 
Input to the Board 

from ARINC Source 
100 20 BNR Deg -15 +15 

 

BIT MEANING BIT MEANING BIT MEANING BIT MEANING 

1-8 Label 15 Not used 22 0.1171875 
29 

0 = "+" 

9 
SDI 

16 Not used 23 0.234375 1 = "-" 

10 17 0.003662109 24 0.46875 30 
SSM 

11 Not used 18 0.007324219 25 0.9375 31 

12 Not used 19 0.014648438 26 1.875 32 Parity 

13 Not used 20 0.029296875 27 3.75   

14 Not used 21 0.05859375 28 7.5   

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 53 of 130 

 

Test Approach:  

• This requirement, related to communication, should be tested for: 

o Data validity in terms of valid SSM, P, SDI 

o Data value, normal and robustness 

o Data receive rate 

Test Type Description Input Expected output 

Normal 
Test for label 314, with normal range data, 

valid SSM, valid SDI, invalid Parity 
Input ARINC Word = 0xTBD Data Invalid 

Normal 
Test for label 314, with normal range data, 

valid SSM, valid SDI, valid Parity 
Input ARINC Word = 0xTBD Data valid 

Normal 
Test for label 314, with normal range data, 

valid SSM, invalid SDI, valid Parity 
Input ARINC Word = 0xTBD Data Invalid 

Normal 
Test for label 314, with normal range data, 

valid SSM, valid SDI, valid Parity 
Input ARINC Word = 0xTBD Data valid 

Normal 
Test for label 314, with normal range data, 

invalid SSM, valid SDI, valid Parity 
Input ARINC Word = 0xTBD Data invalid 

Normal 
Test for label 314, with normal range data, 

valid SSM, valid SDI, valid Parity 
Input ARINC Word = 0xTBD Data valid 

Normal 
Test for label 314, with min range data, 

valid SSM, valid SDI, valid Parity 
Input ARINC Word = 0xTBD Data valid 

Normal 
Test for label 314, with max ICD range 

data, valid SSM, valid SDI, valid Parity 
Input ARINC Word = 0xTBD Data valid 

Robustness 
Test for label 314, with max data range 

data, valid SSM, valid SDI, valid Parity 
Input ARINC Word = 0xTBD Data valid 

Robustness 

Test for label 314, with max data range 

data, valid SSM, valid SDI, valid Parity, and 

unused bit set (Bit 11-16) 

Input ARINC Word = 0xTBD 
Data valid, no 

change 

Normal Test for the receive rate at 20 ms   

 

8.8.9.4 Testing Data Bus Communication Requirement (Typical) 

Requirement:  

� Software shall transmit the following ARINC Label on the Avionics bus. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 54 of 130 

 

o Label L1, Rate 100ms, Message Format: BNR, Data Format: ___ 

o Label L2, Rate 100ms, Format: Discrete, Data Format: ___ 

o Label L3, Rate 100ms, Format: BNR, Data Format: ___ 

o Label L4, Rate 100ms, Format: BNR, Data Format: ___ 

Test Approach:  

• Prior to coming to this requirement, it is assumed that all the labels have been tested for Message Format, 

Rate, and Data Format for normal/robustness cases. The approach here is testing for completeness. 

• Test that all the messages listed in the requirement are transmitted 

• Test that no other message apart from the one listed is transmitted 

 

8.8.9.5 Testing Discrete Interface Requirement 

Requirement:  

� Software shall interface the Pin programming discrete from the input Pin 1 

Test Approach:  

• Make the Pin 1 high (either via discrete simulator or by giving the required voltage at the pin) 

• Check that Software receives the discrete status as high 

• Make the Pin 1 low 

• Check that Software receives the discrete status as low 

 

8.8.9.6 Testing Watchdog Requirement 

Requirement:  

� Software shall configure the external watchdog for 5 ms timeout 

Test Approach:  

• Prove that SW has configured the watchdog for 5 ms, and DSP remains alive when configured 

• Induce scenario that SW is unable to serve the watchdog, thus expecting the DSP reset within 5 ms 

 

8.8.9.7 Testing Stack Requirement 

Requirement:  

� Software shall monitor the stack boundary when 70% of the stack limit is utilized by raising ‘STACK FAIL’ 

bit at specified memory location 

Test Approach:  



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 55 of 130 

 

• Important part of test is to verify that SW can handle the failure condition when stack overflows in a 

predictable manner. Usually this is done as part of worst case timing testing. 

• Assume (for approach purpose) that stack memory ranges 0x200 to 0x2000, hence 70% = 0x1700 

• Assume (for approach purpose) 16 bit memory access 

 

Test Type Description Input Expected output 

NA 
Setup the stack memory with a 

known pattern 

Using emulator, write 0x0 from 

0x1700 to 0x20000, reset the 

CPU and run the SW 

previously loaded in Flash 

Check that 0x1700 to 0x2000 

is written by 0xAAAA 

Check that ‘STACK FAIL’ bit 

= FALSE 

Normal Verify the stack memory utilization 

Perform the test scenario that 

causes the maximum stack 

utilization (maximum nesting 

as per call tree) 

 

 

If 0x1700 != 0xAAAA, 

Manually set 0x1700 with 

0xAAAA 

Memory location from 

0x1700 to 0x2000 is 

0xAAAA. 

If 0x1700 != 0xAAAA, check 

that ‘STACK FAIL’ bit is 

TRUE 

 

Check that ‘STACK FAIL’ bit 

is TRUE 

 

8.8.9.8 Testing CRC Requirement 

Requirement:  

� A CRC check shall be performed on the contents of the program ROM during CBIT.  

� If the test detects a bad CRC, software shall stop further execution after attempting to report the failure 

over the ARINC bus, Label 310, Bit 2. 

Test Approach:  

• Check that no CRC error is reported on the ARINC Label 310, Bit 2 

• Corrupt the CRC either by: 

o If the CRC is stored in RAM, halt the program, and corrupt the CRC using emulator 

o If there is no access to alter the CRC, rebuild the program with wrong CRC, power up 

• Check that CRC error is reported on the ARINC Label 310, Bit 2 

• Check any expected ‘refresh or computed’ data is no more refreshed 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 56 of 130 

 

8.8.9.9 Testing Timing Margin Requirement 

Requirement:  

� The software shall have 30% spare timing margin at the time of certification 

Test Approach:  

Note: Timer Utilization = Obtained Timing / Expected Timing where, 

Expected Timing = Rate at which the main scheduler operates and, 

Obtained Timing = Worst case time obtained upon driving the system to maximum utilization based on 

inputs/scenarios 

The guideline for maximum utilization for worst case timing should be: 

• To the extent possible, SW should acquire all the inputs 

• To the extent possible, SW should produce the output 

• Call-tree should be analyzed to be invoked to maximum. However it should be noted that call tree can give 

the deepest nesting path on synchronous event, but asynchronous event should also be considered for 

worst timing analysis. This needs to be assessed based on the knowledge of software architecture apart 

from high level requirement. 

• The timing should be usually measured by the clock different than the one used for implementing the main 

scheduler should be used. Example – timing measured via scope. 

• Generally preferred method is to monitor an output line (or output signal) that will be OFF in the start of 

scheduler and ON in the end of schedule. Measured time should be OFF-OFF period in a scope. 

 

Test Type Description Input Expected output 

Normal <Worst case timing scenario> <inputs> Spare Timer margin >= 30% of <expected rate> 

 

8.8.9.10 Testing Power On Built-In-Test Requirements 

Requirement:  

� The software shall perform the ARINC Transreceiver test during Power-up test 

� The software shall transition to ‘Failed mode’ if the ARINC test fails 

� The software shall transition to ‘Normal mode’ if the ARINC test passes 

Test Approach:  

Note: Usually all the power-up test are via software-controlled, example making the routing of RX->Tx->Rx 

based on control register,  and hence test case may not have provision to have any control while the 

DSP/controller power’s up.  



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 57 of 130 

 

Hence possible options to test these requirements are: 

• On any output communication message from SW 

• Storage of ARINC status on the memory (like RAM, NVRAM etc) else, 

• Go for debug based testing if allowed on the software using debugger Or, 

• Modify the code to have the status of test reflected in communication output message or, memory storage. 

The modified code should be justified in terms of documentation and need or,  

• Check any output that is outcome only when the SW is in normal mode under ‘Pass’ state of ARINC Test, 

and similarly check any output that is outcome only when the SW is in failed mode under ‘Fail’ state of 

ARINC Test, 

 

For any approach of the test being selected, test case should be written for ‘Pass’ and ‘Fail’ outcome of ARINC 

Test. 

Test Type Description Input Expected output 

Normal 

Initial SW state = any state other 

than ‘normal mode’ 

Test for expected failure of test 

Power up, inject error on the 

ARINC Test (using HW, SW, or 

by modification) 

SW state = ‘Failed mode’ 

ARINC Test Status = Fail 

Normal 

Initial SW state = any state other 

than ‘normal mode’ 

Test for expected pass of test 

Power up, make the state of 

HW test to make the ARINC 

Test (using HW, SW, or by 

modification) to Pass 

SW state = ‘Normal mode’ 

ARINC Test Status = 

Pass 

 

8.8.9.11 Testing Software Partitioning Requirement 

Requirement:  

� The software shall reside in Partition A. 

� The software shall interact with Partition B using communication bus/protocol xxx. 

� The software shall receive the following input from Partition B …. 

� The software shall transmit the following output to the Partition B …. 

Test Approach:  

• Review of the executable load procedure on the Partition A 

• Test Case should be executed on the HSIT environment 

• Test Partition to replicate the Partition B should be made to provide the data/communication interface to 

Partition A 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 58 of 130 

 

9.0 UNIT TESTING 

Unit testing is the process of testing the functionality of the lowest entity with respect to the design, isolating 

entity from the system by means of simulating all other external interfaces of the entity. It is also called as white 

box or glass box or component or module testing. The unit under test has to undergo structural coverage other 

than functionality. 

 

 

 

 

 

Any software unit or module or component must have a software design specification in order to be tested. 

Given any initial state of the component, in a defined environment, for any fully-defined sequence of inputs and 

any observed outcome, it shall be possible to establish whether or not the unit or module or component 

conforms to the specification. 

 

 

 

Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, 

although it is not uncommon for coding and unit testing to be conducted as two distinct phases. The basic units 

of design and code are individual subprograms (procedures, functions, member functions). 

 

Detailed Design 

(Input) 

Unit Test 
(Process) 

Test Report + Coverage Report 

(Output) 

Simulating Interface 1 Simulating Interface 2 Simulating Interface n 

Unit or Module or CSU 

Under Test 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 59 of 130 

 

9.1 ETVX Criteria for Unit Testing 

Entry criteria:  

Batch of source and header files to be tested. 

 

Inputs:  

� Source files,  

� Header files, 

� Software Requirements Data, 

� Software Design Document, 

� Software Coding Standard, 

� Template of Code Review checklist          

 

Activity: 

The Project Manager assigns the modules to Team Members. The following activities are performed by the 

Team Member: 

� The source code is checked for conformance with the requirements through the traceability matrix. 

� The source code is checked for conformance with the coding standards. 

A Problem Report is raised for any discrepancies mentioned in the Code Review checklist and sent to the 

customer.  The Unit Testing phase commences after successful completion of Code Review phase with no 

discrepancies mentioned in the code review checklist.  

 

Outputs: 

Software Verification Cases and Procedures, Code Review checklist and Problem report (if any). 

9.2 Unit Testing Objectives 

The principal objectives of Unit Testing are to verify the functionalities of the module under test, 

� To verify compliance of each component with respect to its low -level requirements 

� To verify the response of each component to normal as well as abnormal conditions 

� To generate the measure of structural coverage as per DO-178B applicable level. It should be noted 

that the structural coverage can be attained at any level of test and not necessarily by low level test. 

But in addition to the above we can have the following too. 

� To verify its structural coverage, 

� To check code for functional match with the design and data transformation, 

� To find undiscovered errors, 

� To ensure the quality of software. 

� Testing the lowest level entity (Most independent i.e. CSU) within its boundaries. 

� The functionality of the module and at the same time tests its robustness. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 60 of 130 

 

As per DO-178B Section 6.4, If a test case and its corresponding test procedure are developed and executed for 

hardware/software integration tests or software integration testing and satisfy the requirements-based coverage 

and structural coverage, it is not necessary to duplicate the test for low-level testing. Substituting nominally 

equivalent low-level tests for high-level tests may be less effective due to the reduced amount of overall 

functionality tested. Hence the applicability of performing low level test should be documented in the SVP. 

 

Unit test is simplified when a module with high cohesion is designed. When a module addresses only one 

function, the number of test cases is reduced and errors can be more easily predicted and uncovered. Unit 

Testing is also called white box testing. White box is a testing technique that takes into account the internal 

structure of the system or the component. The entire source code of the system must be available. This 

technique is known a white-box testing because the complete internal structure and working of the code is 

available.   

Unit helps to derive test cases to ensure the following 

� All independent paths are exercised at least once. 

� All logical decisions are exercised for both true and false paths. 

� All loops are executed at their boundaries and within operational bounds. 

� All internal data structures are exercised to ensure validity. 

9.3 INPUTS AND OUTPUTS FOR UT 

INPUTS OUTPUTS 

FOR TEST CASE GENERATION:  

� Software Design Description (SDD) 

� Low Level Requirement (this is usually part of SDD 

document) 

� Data Dictionary 

� Testing Standards, Software Verification Plan 

� Any tool used for the traceability management (Test 

Case � LLR) example DOORS as applicable 

 

FOR TEST PROCEDURE  GENERATION:  

� Test Case 

� Tool and its supporting environment for writing the test 

script if any (Example, Rational Test Real Time 

with Target Deployment Port on specific target) 

� Testing Standards, Software Verification Plan 

 

� Software Verification Cases and Procedure Document 

� Test Case 

� Test Procedure 

� Traceability Matrix, LLR � Test Case, Test Case � Test 

Procedure 

� Test Report 

� Test Report (Pass/Fail status) 

� Coverage Report 

� Problem Report if applicable 

� Review Record/Checklist 

� Configuration records 

� Additionally the following data should be completed prior 

starting the formal execution of low level test if 

applicable: 

� Source to object verification – required only for Level A and 

if structural coverage is obtained based on source 

code (and not on object code), Refer Appendix C for 

detail on the guideline for performing this activity 

� Tool Qualification data if applicable 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 61 of 130 

 

9.4 Unit Testing Guidelines 

9.4.1 Common Testing Guideline 

• The initial condition of the output should be of different than the expected result in the test case. 

• When checking the output, ensure that output values are toggled in different test case to prove affect of input. 

• For the expected value of the float on the target computer, delta value for tolerance should be as stated in 

SVP or standard or, design document as applicable 

• It is acceptable to modify the software; however this should be documented and made part of test procedure 

or, SVCP document. Typical example of code modification for Low Level Test 

1. Infinite loops 

2. Tool related constraints related modification 

Example: Usage of interrupt for the function prototype. Since the testing is done on low level, ISR 

will not be present. Hence modification can be done and justification to be recorded in SVCP 

3. Usage of asm keyword 

• For the test covering the till the boundary value of the input should be categorized as “Normal Range” test. 

For the test covering the outside the boundary value of the data dictionary of the input, should be categorized 

as “Robustness Range” test.  

• Test Case description should state the intention or objective or highlight of test instead of repeating the input 

and expected data 

Example: 

� Tests the nominal range of input 1 

� Tests the boundary value for input 1 

� Tests the out of range for input 1 

� Tests the FT condition for MC/DC combination on Input 1, Input 2 

� Tests the divide by zero condition for input 1 / input 2 

� Test for Input 1 with 1 LSB (1 count) greater than operator condition value 

� Test for Input 1 at operator condition value 

� Test for Input 1 for maximum limit 

� Test for Input 1 for minimum limit 

� Test for Input 1 for more than maximum limit 

� Test for Input 1 for less than minimum limit 

� Tests the switch case X, value Y 

� Tests the default case switch case X 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 62 of 130 

 

• For Low Level requirement based testing,  data type should be based on design and not to the source code. 

• Test Case and Procedure should follow the accepted template 

9.4.2 Test Case Guideline 

• Function under test should be public function of .c (or .ada etc as applicable) 

• The variables to be tested should be: 

� Function parameter(s)  

� Function return variable (if applicable) 

� Global variable(s) 

� Memory mapped local variables or, registers 

� Stub parameter(s) 

� Number of times of calling the Stub  

� Stub return variable (if applicable) 

Note: The stubs are the functions that are external to the current module. 

• All output data(s), 

� Parameter(s) – Function or Stubs 

� Global variables 

� Memory mapped local variables 

should have an expected value different from initial values 

• The individual test case should test only the variables or fields of structure or specific array index updated in 

the design 

Note: In general, entire variable (structure, array, parameter etc) should be kept in environment block (or 

Initialization block) with known input and expected output, and specific field of structure or, array should be 

tested in specific test case. This will be applicable to function parameters, local variables, and global 

variables. This block will be default executed all the cases with the same input, expected value unless the 

specific case overrides the input and expected value. 

• The mode (IN, OUT or INOUT) used in stub should be same as in the actual function prototype 

• ‘Named values’ of enumerated types, preprocessor definitions should be used instead of its numerical values 

as specified in data dictionary 

• The expected value should not computation, and should state the explicit value 

• The tolerance used for expected floating data should be as agreed in the plans 

• Test case should cover the nominal value of the input data as per data dictionary range 

• Test case should cover the boundary value of the input data as per data dictionary range 

• Test case should cover the out of boundary range of the input data as per data dictionary range 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 63 of 130 

 

Relational operators should be tested on the relational boundary +/- LSB as count of 1. Apart from these 

values, minimum, maximum and out of the boundary value and any other point of interest should be tested.  

�  “a>10”: Test, a = 10, a = 11  

� “a>=10”: Test, a = 9, a = 10, a = 11 

� “a<10”: Test, a = 9, a = 10 

� “a<=10”: Test, a = 9, a = 10, a = 11 

� “a != 20”, Test a = 20 and any other value 

� “a == 20”, Test a = 20 and any other value 

 

• Static functions should be tested through the calls of the public function only 

• For floating point the test cases should be same as integer except the LSB should be changed to “Delta” 

stated in plan 

• Interrupt Service Routine, ISR, functions will be tested as normal function (without ISR invocated) at low level 

test 

• Use a variety of inputs and expected results rather than constantly testing with the same sets of values 

• The traceability of low level requirement to test case(s) should be complete i.e, at least one test case should 

exists for low-level requirement 

• The traceability of test procedure(s) to test procedure should be complete i.e, every test case should have the 

associated test procedure. 

 

9.4.3 Test Procedure (or Script) Guideline 

• The test procedure should be traceable to the test case(s) 

• No test procedure should be written without the traceability to the test case(s) 

• For uniform indentation, common editor should be used, with a defined tab spaces, and no tab usage 

 

9.4.4 Test Report Guideline 

Test execution should yield Pass/Fail status and structural coverage report if applicable. 

• The tests should be executed with and without instrumentation (only for instrumentation based tool). Only if 

the test result has the pass status, the coverage credit can be taken. In case of the difference of the test 

result, problem report should be raised and analyzed 

• For any failure of the test, problem report should be raised 

• Problem Report should be raised for any “Failed” test status or insufficient coverage 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 64 of 130 

 

9.4.5 Typical Issues/Errors Found In Design during Low Level Test 

Typical Issues/Errors, not an exhaustive list, found during Low Level Test against design are stated below. 

• Source Code does not implement the algorithm 

• Dead code 

� Due to incorrect coding practices 

� Additional code without being associated to requirement 

• Data overflow/underflow on assignments due to type-casting problems: eg. output (signed 16) = input 1 

(signed 32) 

• Un-initialized data leading to inconsistent expected value 

• Mathematical computation issues 

� Divide by zero 

� Data overflow/underflow on computation, example output (signed 16) = input 1 (signed 16) * 2 

� Accuracy issues on floating computation expected values 

• Incorrect data access modes (IN, OUT, INOUT). Example global data defined as IN, is actually INOUT etc 

• Memory access violation, example indexing an out-of bound array 

• Incorrect logic decision, example brackets not proper, usage of “>” instead of “>=”, usage of “=” instead of 

“==” etc 

• Incorrect response to corrupted input 

• Incorrect handling of validity status of data prior to usage. Example, a global data is assigned to any physical 

memory address by an call to the external function, and the same global data  is referenced in the current 

function under test 

• Design lists the components that are never called for.  

• Lack of information in design. This should ideally be mitigated by performing the design and code reviews on 

the baseline prior performing the low level test 

� Does not contain the detail design for all component 

� Does not contain the data dictionary details, data/range/type/defines etc 

 

9.4.6 Typical Issues/Errors Found within Low Level Test Itself 

Typical Issues/Errors, not an exhaustive list, found within Low Level Test are stated below. The issues are listed 

in terms of volume of the issues in ascending order, based on project case studies. Most of the issues are 

related to configuration, followed by test case selection criteria followed by reviews. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 65 of 130 

 

• Test done on component in distributed baseline of components. Problems surfaces during the formal run 

• Tool related files required for re-creating the environment (example, .rtp, .inf in case of RTRT) not checked in 

or, not the latest 

• Incorrect description of test case objectives, test repeating the test data rather than the rationale 

• Due to lack of any automated traceability management tool, lack or, incorrect, bi-directional trace between 

LLR � Test Case and Test Case � Test Procedure (or Script) 

• Test does not verify all the data elements, either due to lack of initialization setup of complete data structure 

or, missing to test each data elements individually 

• Test calls the function under test with value instead of variables 

• Function/Stub Parameter mode not tested as per design 

• Modification on the source code not documented, and found to have issue on test execution 

• Incorrect handling of memory mapped register – not repeatable if not set properly 

• Inability of tester to set the linker memory section leading to unpredicted result 

• Issue with the setting of coverage setting, this getting debated on late state of project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 66 of 130 

 

9.5 Unit Test Case Designing 

Unit testing should be done only with the Software Design Document as the input but not the code 

Because 

WITH CODE AS INPUT, THE REQUIREMENTS ARE NOT TESTED AND  

MISMATCH BETWEEN DETAILED DESIGN AND CODE CANNOT BE DETECTED 

 

 

 

 

 

Unit testing focuses verification efforts on the smallest unit of software design the module. Using the procedural 

design description as guide, important control paths are tested to uncover errors within the boundary of the 

module. The relative complexity of the tests and uncovered errors are limited by the constraint scope established 

for the unit testing. The unit test is normally white-box oriented and the step can be conducted in parallel for the 

multiple modules. 

Example 1 : With Detailed Design as Input 

Detailed Design says:  

Swap the values of 2 integer variables A and B (where A, B holds half the magnitude of its type). 

 

 

 

 

 

 

Irrespective of the kinds of algorithm used, the function it does is swapping two values of variables. One of the 

inputs and expected output of this requirement is 

 

I/p -> A=10, B=5 and O/p -> A=5, B=10 (Testing Within Boundaries) 

 

Then we can say that the functionality is correctly implemented. 

Example 1: With Code as Input 

Detailed Design says:  

Swap the values of 2 integer variables A and B (where A, B holds half the magnitude of its type). 

 

 

 

 

 

 

Code 

(Input) 

Unit Test 
(Process) 

Useless 

(Output) 

A = A + B 

B = A - B 

A = A - B 

A = A - B 

B = B + A 

A = B - A 

Temp = A 

A = B 

B = Temp 

A = A * B 

B = A / B 

A = A / B 

A = A / B 

B = A * B 

A = B / A 

Temp = A 

B = A 

A = Temp 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 67 of 130 

 

Consider the swap design using “Temp”. Since the design is not referred, the tester doesn’t have the knowledge 

that this is a code for swapping the values of 2 variables. So tester executes his test with  

 

I/p -> A=10, B=5 and expects O/p -> A=10, B=10   Result is OK 

 

From tester’s point of view, the code is behaving correctly and there is absolutely no error with the functionality. 

Do you really prove any point in this kind of testing…?       

NO is the only answer 

 

Now let us consider the below design 

 

 

 

 

 

Consider code in first 2 designs without using “Temp”. Given I/p -> A=10, B=5 and O/p is A=5, B=10… great!!!  It 

works, isn’t it…?  So the functionality is correct, you would say… 

 

Now if we give the following I/p -> A=10, b-> 0   O/p -> ??  What went wrong? Analyze the code. Step 2 resulted 

in divide by zero error. So the code executed is not ROBUST -> functionality is not implemented for all the 

possible values of inputs 

 
Unit Testing is normally considered as an adjunct to the coding step. After source-level code has been 

developed, reviewed and verified for correct syntax unit test case design begins. A review of design information 

provides guidance for establishing test cases that are likely to uncover errors in each of the categories discussed 

above. Each test case should be coupled with a set of expected results. Since the module is not a standalone 

program, driver and or the stub must be developed for each unit test. The driver is nothing more than a “main 

program” that accepts test cases data, passes such data to the test module and prints relevant results. Stubs 

serve to replace the modules that are subordinate to the module that is to be tested. A “STUB” or “DUMMY SUB 

PROGRAM” uses the subordinate module’s interface may do minimal data manipulation and reports verification 

of entry and returns. 

9.5.1 Objective 

The objectives of Low level testing are: 

• To verify compliance of each component with respect to its low -level requirements 

• To verify the response of each component to normal as well as abnormal conditions 

• To generate the measure of structural coverage as per DO-178B applicable level. It should be noted that the 

structural coverage can be attained at any level of test and not necessarily by low level test. 

A = A * B 

B = A / B 

A = A / B 

A = A / B 

B = A * B 

A = B / A 

Temp = A 

B = A 

A = Temp 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 68 of 130 

 

As per DO-178B Section 6.4, If a test case and its corresponding test procedure are developed and executed for 

hardware/software integration tests or software integration testing and satisfy the requirements-based coverage 

and structural coverage, it is not necessary to duplicate the test for low-level testing. Substituting nominally 

equivalent low-level tests for high-level tests may be less effective due to the reduced amount of overall 

functionality tested. 

Hence the applicability of performing low level test should be documented in the SVP. 

9.5.2 Low Level Test Inputs / Outputs 

INPUTS OUTPUTS 

FOR TEST CASE GENERATION:  

� Software Design Description (SDD) 

� Low Level Requirement (this is usually part of SDD document) 

� Data Dictionary 

� Testing Standards, Software Verification Plan 

� Any tool used for the traceability management (Test Case � LLR) 

example DOORS as applicable 

 

FOR TEST PROCEDURE  GENERATION:  

� Test Case 

� Tool and its supporting environment for writing the test script if any 

(Example, Rational Test Real Time with Target Deployment 

Port on specific target) 

� Testing Standards, Software Verification Plan. 

 

 

 

 

 

 

 

 

 

� Software Verification Cases and Procedure 

Document 

� Test Case 

� Test Procedure 

� Traceability Matrix, LLR � Test Case, Test 

Case � Test Procedure 

� Test Report 

� Test Report (Pass/Fail status) 

� Coverage Report 

� Problem Report if applicable 

� Review Record/Checklist 

� Configuration records 

 

Additionally the following data should be 

completed prior starting the formal execution of 

low level test if applicable: 

� Source to object verification – required only for 

Level A and if structural coverage is 

obtained based on source code (and not 

on object code), Refer Appendix C for 

detail on the guideline for performing this 

activity 

� Tool Qualification data if applicable 

 

9.5.3 Test Case/Procedure Format 

As per DO-178B, a test case is defined as set of test inputs, execution conditions, and expected results 

developed for a particular objective, such as to exercise a particular program path or to verify compliance with a 

specific requirement. 

The test case template should contain: 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 69 of 130 

 

T
C

 I
d

e
n

ti
fi

e
r 

T
e
s
t 

T
y
p

e
 

D
e
s
c

ri
p

ti
o

n
 

In
p

u
t 

O
u

tp
u

t Initial 

Condit

ion(s) 

Expecte

d 

Result(s) 

Pass/Fail 

Criteria 

R
e
q

u
ir

e
m

e
n

ts
 

T
ra

c
e
d

 

Case 1 Normal 

<To mention the high level 

description / objective of test 

without repeating the 

input/output values> 

Input 1 

Input 2 

Output 1 

Output 2 
  

See Output 

Signals 

actual results 

equal 

expected 

result 

Req-1 

Case 2 Normal 

Example,  

Tests the timer reset condition 

Tests for FT condition for 

MC/DC combination on Input 1, 

Input 2 

      
See Output 

Signals 

actual results 

equal 

expected 

result 

Req-1 

Case 3 Normal         
See Output 

Signals 

actual results 

equal 

expected 

result 

Req-2 

Case 4 Robustness         
See Output 

Signals 

actual results 

equal 

expected 

result 

Req-3 

 

As a good practice, it is advisable to trace only one requirement per test case row for easing the review process 

of requirement coverage to test case. In case if the same test case (example Case 1) traces to more than one 

requirement, test case can be added as a new row with reference to Case 1 in test case description. This may 

look redundant, but found to be very effective while reviewing the completeness of a requirement. As per DO-

178B, a test procedure is defined as detailed instructions for the set-up and execution of a given set of test 

cases, and instructions for the evaluation of results of executing the test cases.  

 

The procedure should also include the procedure to retrieve the test script from the CM. The source code, 

executable retrieval procedure can be referenced to Build and Load Procedure document, typically maintained in 

Software Environment Life Cycle Configuration Index document. In case the software builds needs to be made 

specifically for testing, the specific build procedure should be detailed. 

The test setup in terms of environment setup is usually documented in SVCP, Software Cases and Procedure 

document based on test environment. The test procedure itself is usually implemented as script, based on the 

test case. It is acceptable to have the test procedure implementing multiple test cases. The traceability of test 

procedure to test case and vice-versa should be maintained. The test procedure template should contain: 

• Test Procedure Name (or Identifier) 

• Test Procedure Author/Version/Date: (Note the Author/Version/Date can be maintained by CM tool usage 

and need not be part of template itself) 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 70 of 130 

 

• Test Environment: This can be part of each script or, as a common note in SVCP document 

• Test Case(s) Traced 

 

For cases where the source code debug method is utilized for requirement coverage, test case should still be 

written. Only the format of test procedure should mention the execution steps. In certain cases, the requirements 

are directly verified via inspection of implementation, example code inspection. In such cases, test case, test 

procedure format will not be applicable.  

 

9.5.4 Data Dictionary 

Data Dictionary is defined during the design phase, which defines the detailed description of data, parameters, 

variables, and constants used by the system, both internally and externally throughout the software architecture. 

It can be part of SDD itself or separate document.  

 

Data dictionary is a vital input for performing the low level test for performing the data range tests. A data 

dictionary should contain the following details at minimum: 

 

Data Dictionary for global, constant data: (content filled for sample) 

Element 

Name 

Data 

Type 
Description 

Initial 

Value 
Range Unit 

gAirSpeed INT32 
Stores the 

airspeed value 
0 [0..300] Knots 

gVTable VTStruct 
Constant structure 

for voltage rate 

{ 

0, 5 

10, 15 

20, 22 

30, 25 

} 

NA – Constant Volts 

 

Data Dictionary for function parameters: (content filled for sample) 

Element 

Name 

Data 

Type 
Description 

Initial 

Value 
Range Unit 

Function 

Name 
Mode 

pFaultCode 
FaultCodeE

num 
Fault Code NA [0..30] NA FaultCompute Input 

*pDest INT32 
Destination 

Pointer 
NA NA NA memCopy Output 

*pNVM_Stat 
NVMCodeE

num 

Stores the NVM 

write status 
NA [0..5] NA NVMWrite Input/Output 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 71 of 130 

 

Data Dictionary for macro definition: 

Data dictionary should define the macros used for the design algorithm as applicable. 

 

Type Dictionary: 

Data dictionary should type details for the data type used in design. Additionally if there is any tolerance on the 

float comparison, the same should be defined as part of design document. 

9.5.5 Test Case Selection Criteria 

Test case selection criteria should include the following: 

9.5.5.1 Requirement Based Test Cases 

The objectives covered by requirement-based test cases are: 

• To test that the algorithms satisfies the low-level requirement(s) 

• To verify that the component does not execute un-specified requirement 

• To verify the computation accuracy 

• To verify that all interfaces input data have been exercised as per the range, and obtained value as 

expected 

• To verify that expected values of all extern function interfaces are obtained 

• To test the limit values as per the ranges of input(s), global variable(s) as defined in data dictionary.  

9.5.5.2 Robustness Test Cases 

Robustness test cases should be written to verify that erroneous input data does not disturb the component 

execution. 

The objectives covered by robustness test cases are: 

• To verify the response to the inputs outside the range specified in low-level requirement 

• To verify the response to missing or corrupted input data 

• To verify the violations to data access such as array limits if possible 

• To verify the external interface data mapping 

• To verify erroneous possibility of mathematical computations 

Example of robustness cases:  

• Divide by zero possibility 

• Exponentials or powers with negative numbers 

• Square root of negative number 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 72 of 130 

 

• Data Overflow, Underflow, eg. multiply 2 big 16 bit values to make sure result is larger than 16 bits and 

does not cause overflow; storage overflow/underflow on a bit-field structure element 

• Testing with the value not a member of a defined enumerated type 

• Testing with the value of switch case value that is not handled 

• Using invalid values 

• Using null pointers 

• For floating point values 

� Use infinity 

� Negative infinity 

� Not a number (NaN) 

9.5.6 Test Environment 

All the tests should be executed on the target computer. Hence the test environment build steps should be same 

as required to make the formal executable including build option. 

Any deviation (like changes in compiler options, usage of simulator etc) in the test environment should be 

approved of environment equivalency with respect to the target computer. 

 

9.5.7 Tool Qualification 

Tool qualification should be assessed on two folds: 

1. Whether tool requires qualification? 

2. If yes, what category, development or verification, should the tool be qualified? 

 

A tool is categorized as verification tool if the tool output is not part of airborne software and, the tool can fail to 

detect the error. The tool requires qualification, as verification tool, if the output of the tool is not reviewed, or it 

eliminates, reduces or automates any DO-178B process. 

 

Example, Tool qualification would be required if the verification tool provides any one of the following feature: 

• Automated generation of test cases or script 

• Automated generation of test report – Pass/Fail status 

• Automated generation of coverage measure 

• Automated review of test cases/procedure per standards etc 

Tool operational requirements should be written describing the DO-178B credit sought for use of the tool, tool 

installation and operating instructions.  



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 73 of 130 

 

Based upon the tool operational requirements, project usage of language constructs, test cases should be 

prepared. The test should be executed in the project specific test environment generating the test reports. The 

test reports should be manually reviewed. 

In general, for any certification credit taken by tool, should be manually reviewed as part of tool qualification 

process. 

 

9.5.8 Data and Control Coupling 

Data coupling is defined as the dependence of a software component on data not exclusively under the control 

of that software component. 

Control coupling is defined as the manner or degree by which one software component influences the execution 

of another software component. 

Following paragraph provides guideline for data and control coupling. 

9.5.8.1 Data Coupling 

The data flow analysis will be done starting with the review of software requirements data, design document and 

code review using their respective review checklists.  

 

The test coverage of the interface data flow at high level requirements will be attained by associating these data 

flow to the high level requirement based test, and producing an analysis report as part of software verification 

results for completeness.  

 

The test coverage of the data flow at low level requirements will be attained by associating the data from data 

dictionary which includes all global data (linker map may also be used), to the low level requirement based test, 

and producing an analysis report as part of software verification results for completeness.  

 

9.5.8.2 Control Coupling 

The calling tree will be analyzed to identify all of the functions in the software. This will be documented as part of 

software design document and reviewed using design review checklist. 

 

As a part of control coupling analysis, it will be manually reviewed that there are no unused function in the calling 

tree. Also, the structural coverage report generated by low level test (or as applicable to other level) will be 

analyzed to check that the entire calling trees have been executed.  



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 74 of 130 

 

Both data and control coupling analysis should be stated in software verification results. 

9.5.9 Structure Coverage Analysis 

It is reiterated that structural coverage can be attained at any level of test (SW/HW, SW/SW or Low Level Test).  

The structural coverage objective per level is: 

• Level C: 100% statement coverage 

• Level B: Level C + 100% decision coverage 

• Level A: Level B + 100% MC/DC coverage 

• Every point of entry and exit in the program has been invoked at least once 

 

Post test execution, the structural coverage measure should obtained. If any instrumentation based tool is used, 

the coverage credit can be taken only if the test passed in with/without instrumentation. 

For the uncovered structural coverage portion, it should be analyzed if the following are required (or leads to): 

• Changes to: 

o Low-level requirements 

o Low level tests 

o Software 

• Justify the presence of non-coverage (List not exhaustive) 

o Defensive Code, example having a default case may be a coding standard requirement 

o Hardware constraints, example RAM test failure logic cannot be covered unless the memory is corrupted 

o Cannot be possible to cover under the input scenarios but a good coding practice. Example of a 

deficient code coverage for Level B, else part cannot be covered in the case below 

Example: 

array_index = array_index + 1; 

If (array_index > 100) 

{ 

array_index = 100; 

} 

o Static function always a limited data range, and the calling function checks the range upon receiving the 

return value. In the example below, false part of if condition cannot be covered. 

Example: 

retVar = LimitAdc (input_var); /* Call to a static function which always limits the value 2047 after some 

scaling */ 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 75 of 130 

 

If (retVar <= 2047) 

{ 

   … 

} 

o Code checking for some location that cannot be accessed with low level test, example a Flash location 

being accessed when the test is done from RAM. 

• Supplement the coverage by manual inspection 

 

Suggested format for structural coverage analysis is: 

File Name / 

Version 

Function 

Name 

Coverage 

Report Name / 

Version 

Code Extract 

with deficient 

coverage (in 

red) 

Code Coverage 

Analysis 
Action / Conclusion 

1.c Fun() 1.c.html 

IN_AIR: 

   Status = True; 

break; 

 

default: 

   status = False; 

 break; 

Defensive Code 

as required by 

coding standard 

No action required on 

requirement, code or 

test. 

 

100% coverage is 

justified based on 

analysis 

9.5.10 Requirement Coverage Analysis 

The first objective of requirement coverage analysis is to verify: 

• Each software requirement  has one or more test cases verifying the requirement and,  

• There is no test case that is not associated with any requirement 

The second objective of requirement coverage analysis is to verify each requirement has test cases for normal 

range and equivalence class values, boundary values, and robustness tests. The review of the test cases and 

the traceability matrix accomplishes the requirement for test coverage analysis. 

9.5.11 Formal Test Execution 

The formal execution should be performed under the conformed environment and controlled inputs. Usually the 

environment conformity is done by Quality Assurance. 

Following guideline are listed below to be followed for the assessing the readiness of formal execution. Usually 

the project calls for the test readiness milestone as the gate (or, transition criteria) prior conducting the formal 

execution. 

• Requirements document are controlled (checked in CM) 

• Test cases and procedures are controlled (checked in CM) 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 76 of 130 

 

• Source code are controlled (checked in CM) 

• Review/QA/CM record are available on the baseline undergoing formal run 

• Known problem reports are available and agreed 

• Informal metrics on structural coverage are available and agreed 

• Informal metrics on test result are available and agreed 

• Any deviations if applicable are agreed 

• Test environment available as specified in test procedure 

• Tool qualification if applicable is completed 

• If structural coverage tool is used, the coverage settings in the tool is correct as per the applicable DO-178B 

level 

• Compiler/Assemble should be same as used in development. If there are any difference, it should be 

documented prior and agreed 

• Any test constraint (e.g. modification of source code due to infinite loop, h/w memory mapping, usage of 

debugger for polling logic) should be justified and documented 

• Retrieval of source code, test procedure from CM system is defined and documented to be followed for 

formal run. 

• For Level A and B, tests should be executed by person different from author of test. 

 

 

9.6 Unit Testing Process 

The Unit Test process of a module typically consists of the following phases: 

1. Review and Analyses Phase 

2. Unit Testing Activity 

3. Technical Control / Peer Review of the unit testing activity. 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 77 of 130 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 78 of 130 

 

Static Analysis

Instrumented

PRViolations

Non-Instrumented

Instrument Code

Run Tests
Download to MPC 555

Eval Board

Build Code for Target

Run Tests

Select/Generate Tests

Select/Generate Tests

Yes

Module Test
(2 Phase)

No
Reject

Results

Results

Simulator based

Target Processor

Based (MPC 555 Eval

Board)

ECP

Pass

Yes

Statement
Coverage

100%

MC/DC 100%

Decision
Coverage

100%

Yes

Yes

Yes

No

PR

No

Pass

Yes

No

Update SVR

Baseline test files
and results files

Perform Module
Test Review  and

Signoff

Create Module
Test Folder

Update SVR

    Entry Requirements into
Module Test phase:

� SRD   - Released
� SDD   - Released
� STCP - Released
� Code  - Released

Accept

Reject

Phase 1

Phase 2

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 79 of 130 

 

9.6.1 Review and Analyses Phase 

The objective is to detect and report errors that may have been introduced during the software coding process. 

These reviews and analyses confirm that the outputs of the software coding process are accurate, complete and 

can be verified. Primary concerns include correctness of the code with respect to the software requirements and 

the software architecture, and conformance to the Software Code Standards. These reviews and analyses are 

usually confined to the Source Code.  

 

Its objectives are: 

 

� Compliance with the low-level requirements:  

The objective is to ensure that the Source Code is accurate and complete with respect to the software low-

level requirements, and that no Source Code implements an undocumented function. 

 

� Compliance with the software architecture:  

The objective is to ensure that the Source Code matches the data flow and control flow defined in the 

software architecture. 

 

� Verifiability:  

The objective is to ensure the Source Code does not contain statements and structures that cannot be 

verified and that the code does not have to be altered to test it. 

 

� Conformance to standards:  

The objective is to ensure that the Software Code Standards were followed during the development of the 

code, especially complexity restrictions and code constraints that would be consistent with the system safety 

objectives. Complexity includes the degree of coupling between software components, the nesting levels for 

control structures, and the complexity of logical or numeric expressions. This analysis also ensures that 

deviations to the standards are justified. 

 

� Traceability:  

The objective is to ensure that the software low-level requirements were developed into Source Code. 

 

� Accuracy and consistency:  

The objective is to determine the correctness and consistency of the Source Code, including stack usage, 

fixed point arithmetic overflow and resolution, resource contention, worst-case execution timing, exception 

handling, use of un-initialized variables or constants, unused variables or constants, and data corruption due 

to task or interrupt conflicts. 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 80 of 130 

 

9.6.2 Unit Testing Phase 

 

9.6.2.1 Requirements Based Test Coverage Analysis 

This is done to verify whether the implementation matches the requirements and only the requirements. 

Software requirements should contain a finite list of behaviors and features, and each requirement should be 

written to be verifiable. Testing based on requirements is appealing because it is done from the perspective of 

the user (thus providing a demonstration of intended function), and allows for development of test plans and 

cases concurrently with development of the requirements. Given a finite list of requirements and a set of 

completion criteria, requirements-based testing becomes a feasible process, unlike exhaustive testing. 

 

The software verification test cases are to be created based on the software requirements specification. The first 

step is to develop functional and robustness tests to completely test and verify the implementation of the 

software requirements. The second step is to measure coverage (functional and structural).  The measure of 

structural coverage will help provide an indication of the software verification campaign completion status. The 

tests stop criteria is not limited to a specific step but rather applied for all tests. For example, some high level 

requirements can be covered by integration tests, i.e., structural coverage are measured on all tests levels. 

 

The objectives of Requirements Based Testing are as follows: 

1. At least one test case should be associated with each software requirement. 

2. The test cases should satisfy the criteria for normal and abnormal range of inputs. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 81 of 130 

 

The objective of this analysis is to determine how well the requirements-based testing verified the 

implementation of the software requirements. This analysis may reveal the need for additional requirements-

based test cases. The requirements-based test coverage analysis should show that: 

� Test cases exist for each software requirement. 

� Test cases satisfy the criteria of normal and robustness testing 

 

Requirements-based tests are subdivided into two categories: 

� Normal Range Tests. 

� Robustness Tests. 

 

9.6.2.1.1 Robustness or Abnormal Tests 

The objective of robustness test cases is to demonstrate the ability of the software to respond to abnormal inputs 

and conditions.  This is done to verify robustness of the code under test. In robustness testing, the tester should 

verify the behavior of the module under test when subjected to abnormal operational values. Robustness test 

cases enable visibility of how the software responds to a range of abnormal inputs and conditions. Robustness 

tests will be incorporated into functional tests if specifications exist for handling invalid input data. The Software 

Design Standard [SDS] should mandatory require that handling of invalid input data be specified in the Software 

Design Document [SDD]. 

Robustness test cases include: 

 

� Exercise real and integer inputs using equivalence class of invalid boundary values. 

� System initialization exercised with abnormal conditions. 

� Determine the possible failure modes of incoming data especially complex, digital data strings from an 

external system. 

� Compute out of range loop counts as appropriate. 

� Check for arithmetic overflow for time related functions. 

� Exercise transitions that are not allowed by the software requirements for state transitions. 

 

9.6.2.1.2 Normal Range Tests 

The objective of normal range test cases is to demonstrate the ability of the software to respond to normal inputs 

and conditions. Normal range test cases enable visibility of how the software responds to a range of normal 

inputs and conditions. Normal range test cases include: 

� Real and integer input variables should be exercised using valid equivalence classes and valid boundary 

values. 

� For time-related functions, such as filters, integrators and delays, multiple iterations of the code should be 

performed to check the characteristics of the function in context. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 82 of 130 

 

� For state transitions, test cases should be developed to exercise the transitions possible during normal 

operation. 

� For software requirements expressed by logic equations, the normal range test cases should verify the 

variable usage and the Boolean operators. 

 

The following sub-categories of tests are defined to achieve the above mentioned objectives: 

� Arithmetic Tests. 

� Singular Point Tests. 

� Boundary Value Analysis Tests. 

 

In this type of testing tester should ensure each function entry and exit is encountered at least once and with the 

inputs subjected to normal operational values. Nodes are mathematical operations (+, -, *, /) within both control 

flow and signal flow diagrams. 

 

� Floating-point nodes shall be tested to show that the operations are performed correctly. 

� Integer or fixed-point nodes shall be stressed to a minimum and a maximum value. 

– Integer counters are a special case.  If they are incremented only within a single unit and they 

are limited, they need only be tested at the limits.  If they are incremented in multiple units they 

shall be tested at -32768 and 32767. 

� The following restrictions shall be applied: 

– Addition and Subtraction: A test case must exist where all inputs are not 0.0 

– Multiplication: A test must exist where all inputs are not 1.0 

– Division: A test case must exist where the numerator and denominator are not 0.0 

� During test development, the tester shall examine the logic for the following conditions: 

– divide by zero condition for a divider 

– a negative input to a square root 

– a negative input to the LOG or LN function 

� Bullet proofing will be used for these conditions.  Any unit that does not have this bullet proofing will be 

rejected out as not testable. 

 

9.6.2.1.2.1 Arithmetic Tests 

The goal of arithmetic tests is to verify all computations and their precision using random input values. This is 

achieved by fixing a random value (avoid round numbers) to all variables within the arithmetic expressions and 

calculated manually. The result is verified by executing the unit code. The accuracy of the computation will be 

calculated and expressed in terms of number of deltas. 

 

In this type of testing each arithmetic expression is evaluated for its outcome when the resolution or DELTA of its 

output value while DELTA for all input values is specified a priori. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 83 of 130 

 

If  Z = X +/- Y  then DELTA of Z = (DELTA of X + DELTA of Y) 

If  Z = X * Y  then DELTA of Z = (X * DELTA of Y + Y * DELTA of X) 

If  Z = X / Y  then DELTA of Z = (Y * DELTA of X + X * DELTA of Y) / Square (Y) 

 

9.6.2.1.2.2 Singular Point Tests 

In this type of testing each comparison in the logical condition is evaluated with the values representing all 

possibilities of the condition along with a resolution called DELTA. The purpose of this test is to implement 

conditions such as comparisons that shall be verified by making minor variations (called delta) to the operands 

involved. For each inequality (<, <=, >, >=) we will have two possible test cases: 

• Case where the condition is verified 

• Case where the condition is not verified 

The singular point tests will be performed about the same point or value. Comparisons shall be tested as follows: 

 

Floating-point except for equal to (=) and not equal to (!=) : Within 10% above and within 10% below (see 

note) 

Floating-point equal to (=) and not equal (!=) to          : Within 10% above, equal to, within 10% below (see 

note) 

Signed and Unsigned Integer            : 1 count above, equal to, 1 count below 

Discrete Word              : Equal to and not equal to 

Boolean               : Equal to and not equal to 

 

Note: For the comparison “X < Y”, there must be one test case where Y < X < (1.1 * Y) and another test case 

where (0.9 * Y) < X < Y, where 1.1 and 0.9 are DELTA. X and Y may be reversed.  If the value is 0.0, use +1.0 

and -1.0 instead of 10% above and below. 

� During test development, the tester shall examine the logic for conditions other than equal to and not 

equal to on discrete words and Boolean.  Any unit that has one of these conditions shall be kicked out as 

not testable. 

� If there is an equal to or not equal to comparison on floating-point values, consult with the unit test 

coordinator.  The unit may not work. 

� Some examples of conditional testing: 

 

Floating Point      Integer 

  Condition: X < 55.0     Condition: X > 100 

  10% above test case X = 60.5    +1 test case X = 101 

  = test case not required     = test case X = 100 

  10% below test case X = 49.5    -1 test case X = 99 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 84 of 130 

 

The following will be the test cases for the different inequalities: 

Case A>B 

� A=B (the condition is not verified, hence false) 

� A=B+delta (the condition is verified, hence true) 

Case A>=B 

� A=B (the condition is verified) 

� A=B-delta (the condition is not verified)  

Case A<B  

� A=B (condition is not verified) 

� A=B-delta (condition is verified) 

Case A<=B 

� A=B (condition is verified) 

� A=B+delta (condition is not verified) 

 

9.6.2.1.2.3 Boundary Value Tests 

This is done to verify whether the test inputs are tested at the minimum, nominal and median ((minimum + 

maximum)/2) values. In this testing inputs are made to represent their boundary limits of the range. The 

minimum, maximum and median value of each variable in an expression and computation must be verified to 

make sure that there is no overflow. 

 

For all numerical variables as input, we have to perform three tests:  

� A test for the maximum value of the type of that variable, 

� A test for the minimum value of the type of that variable and 

� A test for the median value of the type of that variable. 

Also the maximum, minimum and median for every calculation in the modules will be manually calculated and 

compared to the results obtained using the testing tool. Moreover, some variables may be restricted to a range 

of variation smaller than the range of its type; in this case two additional tests must be realized, each testing the 

limit of the restricted range. 

 

Boundary Value Analysis is required when inputs or initial values for states are used in mathematical operations 

and shall be applied as shown below: 

 Floating-point  : not required 

 Integer   : -32768 to 32767 (16-bit)  or -2147483648 to 2147483647 (32-bit) 

 Unsigned Integer : 0 to 65535 (16-bit)  or 0 to 4294967295 (32-bit) 

 Discrete Word  : 0000H to FFFFH (16-bit)  or 00000000H to FFFFFFFFH (32-bit) 

 Boolean  : FALSE to TRUE 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 85 of 130 

 

For floating-point values, if tools require ranges, values should be selected to functionally test the unit.  In 

general, -100,000.0 to 100,000.0 will adequately test the unit 

� For non floating-point adjustments, the min and max adjustment range values shall be used instead 

of the values described above.  For floating-point adjustments, if tools require ranges, the 

adjustment range values should be used. 

� For counters, see the exception under Nodal coverage. 

9.6.2.1.2.4 Basis Path Tests 

It is a testing mechanism is proposed by McCabe. The aim of this is derive a logical complexity measure of a 

procedural design and use this as a guide for defining a basic set of execution paths. The test cases, which 

exercise the basic set, will execute every statement at least once. 

 

The virtues of the basis path testing are defined by Cyclomatic Complexity. The Cyclomatic Complexity gives a 

quantitative measure of the logical complexity. This value gives the number of independent paths in the basis set 

and an upper bound for the number of tests to ensure that each statement is excused at least once. An 

independent path is any path through a program that introduces at least one new set of processing statements 

or a new condition. 

 

The objective of independent path testing is to exercise all independent execution paths through a code 

component. If all of the independent paths are executed then all statements in the code component must have 

been executed at least once. Also, all conditional statements are tested for both true and false. 

• These testing techniques shall only be used at the module/function level because as a program increases in 

size during integration then the number of paths grows quickly, thus making it infeasible to use these 

techniques. 

• Independent path testing does not test all possible combinations of all paths through the program.  

The following steps shall be followed for independent path testing: 

1. Create a flow graph for the code component. 

This flow graph can be obtained from LDRA Testbed (refer to relevant LDRA Testbed documentation) or 

created by hand. 

A flow graph consists of nodes that represent decisions and edges that show the control flow. Refer to Figure 

5.3.4.1-1 

 

Example: Flow graph for the binary search routine. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 86 of 130 

 

1

2

3

4

65

7

8

9

bottom > top while bottom <= top

if (elemArray [mid] == key

if (elemArray [mid] < key

Node

Edge

 

FLOW GRAPH 

• An independent path is one that 

traverses at least one new edge in the 

flow graph (i.e. exercising one or more 

new program conditions) 

• Both the true and false branches of all 

conditions must also be executed. 

 

2. Derive the independent paths. 

From the example flow graph defined in Figure 5.3.4.1-1 we can derive the following independent paths: 

1, 2, 3, 8, 9 

1, 2, 3, 4, 6, 7, 2 

1, 2, 3, 4, 5, 7, 2 

1, 2, 3, 4, 6, 7, 2, 8, 9 

If all of these paths are executed then: 

a) every statement in the code has be executed at least once. 

b) every branch has been exercised for true and false conditions. 

The number of independent paths can be derived by calculating the Cyclomatic Complexity of the flow 

graph. This is achieved with the following formula: 

 CC(G) = Number (edges) – Number (nodes) + 2 

Thus the CC of the flow graph in Figure 5.3.4.1-1 is: 

 11 – 9 + 2 

CC = 4 

 

The Cyclomatic Complexity can also be obtained from LDRA Testbed (Refer to relevant LDRA Testbed 

documentation). 

1. Design Test Cases 

The minimum number of test cases required to test all program paths is equal the Cyclomatic Complexity  



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 87 of 130 

 

9.6.2.2 Structural Coverage (Code Coverage) Analysis 

Test coverage analysis is a two step process, involving requirements-based coverage analysis and structural 

coverage analysis. The first step analyzes the test cases in relation to the software requirements to confirm that 

the selected test cases satisfy the specified criteria. The second step confirms that the requirements-based test 

procedures exercised the code structure. Structural coverage analysis may not satisfy the specified criteria. 

Additional guidelines are provided for resolution of such situations as dead code. 

 

Code coverage analysis is the process of:  

� Finding areas of a program not exercised by a set of test cases,  

� Creating additional test cases to increase coverage, and  

� Determining a quantitative measure of code coverage, which is an indirect measure of quality.  

An optional aspect of code coverage analysis is:  

� Identifying redundant test cases that do not increase coverage.  

 

Code coverage analysis is a structural testing technique (AKA glass box testing and white box testing). 

Structural testing compares test program behavior against the apparent intention of the source code. 

This contrasts with functional testing (AKA black-box testing), which compares test program behavior against a 

requirements specification. Structural testing examines how the program works, taking into account possible 

pitfalls in the structure and logic. Functional testing examines what the program accomplishes, without 

regard to how it works internally.  

 

The objective of this analysis is to determine which code structure was not exercised by the requirements-based 

test procedures. The requirements-based test cases may not have completely exercised the code structure, so 

structural coverage analysis is performed and additional verification produced to provide structural coverage. 

Guidance includes: 

� The analysis should confirm the degree of structural coverage appropriate to the software level. 

� The structural coverage analysis may be performed on the Source Code, unless the software level is A 

and the compiler generates object code that is not directly traceable to Source Code statements. Then, 

additional verification should be performed on the object code to establish the correctness of such 

generated code sequences. A compiler-generated array-bound check in the object code is an example 

of object code that is not directly traceable to the Source Code. 

� The analysis should confirm the data coupling and control coupling between the code components. 

 The purpose of structural coverage analysis with the associated structural coverage analysis resolution is to 

complement requirements-based testing as follows: 

� Provide evidence that the code structure is verified to the degree required for the applicable 

software level 

� Provide a means to support demonstration of absence of unintended functions 

� Establish the thoroughness of requirements-based testing. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 88 of 130 

 

The following sub-categories of tests are defined to achieve the above mentioned objectives: 

1. Statement Coverage 

2. Decision Coverage 

3. Modified Condition / Decision Coverage (MC / DC) 

 

9.6.2.2.1 Statement Coverage 

This measure reports whether each executable statement is encountered. To achieve statement coverage, every 

executable statement in the program is invoked at least once during software testing. Achieving statement 

coverage shows that all code statements are reachable (in the context of DO-178B, reachable based on test 

cases developed from the requirements). In summary, this measure is affected more by computational 

statements than by decisions.  

 

Consider the following code segment: 

if ((x > 1) && (y = 0)) 

{ 

      z = z / x; 

} 

if ((z = 2) || (y > 1)) 

{ 

      z = z + 1;  

} 

 

By choosing x = 2, y = 0, and z = 4 as input to this code segment, every statement is executed at least once.  

 

Statement coverage by default also include 

� Condition Coverage and  

� Multiple Conditions Coverage. 

� Loop Coverage 

 

Statement coverage is calculated as follows 

 

                                       Number of Executable Statements Executed 

 Statement Coverage =  --------------------------------------------------------------    * 100 % 

                                          Total Number of Executable Statements  

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 89 of 130 

 

Advantages : 

 

� The chief advantage of this measure is that it can be applied directly to object code and does not require 

processing source code. 

 

Limitations : 

� Statement coverage does not report whether loops reach their termination condition - only whether the 

loop body was executed. With C, C++, and Java, this limitation affects loops that contain break 

statements.  

� Since do-while loops always execute at least once, statement coverage considers them the same rank 

as non-branching statements.  

� Statement coverage is completely insensitive to the logical operators (|| and &&).  

� Statement coverage cannot distinguish consecutive switch labels.  

 

9.6.2.2.2 Condition Coverage. 

 

Condition coverage reports the true or false outcome of each boolean sub-expression, separated by logical-and 

and logical-or if they occur. Condition coverage measures the sub-expressions independently of each other. This 

measure is similar to decision coverage but has better sensitivity to the control flow. Condition coverage means 

that every condition has been made to take true and false.  

 

The branch condition coverage is calculated as follows 

 

                                                       Number of Boolean Operand Values Executed 

Branch Condition Coverage =  ----------------------------------------------------------------------    * 100 % 

                                                     Total Number of Boolean Operand Values 

 

9.6.2.2.3 Multiple Condition Coverage 

 

Multiple condition coverage reports whether every possible combination of boolean sub-expressions occurs. As 

with condition coverage, the sub-expressions are separated by logical-and and logical-or, when present. The 

test cases required for full multiple condition coverage of a condition are given by the logical operator truth table 

for the condition. Multiple conditions coverage means that every possible combination of the logical condition 

must be executed during at least once and every possible condition must evaluated to both true and false. 

However, full condition coverage does not guarantee full decision coverage 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 90 of 130 

 

Limitations : 

� A disadvantage of this measure is that it can be tedious to determine the minimum set of test cases 

required, especially for very complex boolean expressions.  

� An additional disadvantage of this measure is that the number of test cases required could vary 

substantially among conditions that have similar complexity. 

 

The multiple condition combination coverage is calculated as follows 

 

Multiple Condition Combination Coverage =   

 

                    Number of Boolean Operand Value Combinations Executed 

                     --------------------------------------------------------------------------------------    * 100 % 

                        Total Number of Boolean Operand Value Combinations 

 

9.6.2.2.4 Loop Coverage 

This measure reports whether you executed each loop body zero times, exactly once, and more than once 

(consecutively). For do-while loops loop coverage reports whether you executed the body exactly once, and 

more than once.  The valuable aspect of this measure is determining whether while-loops and for-loops execute 

more than once, information not reported by others measure.  

Loops shall be tested to verify that the loop executes appropriately. 

– If the loop executes for a fixed number of iterations this will be automatically achieved as long as the 

loop is executed. 

– If the loop executes for a variable number of cycles, test cases shall be included that test the loop at 

the minimum and maximum number of cycles. 

 

� Where loops set array values, test cases shall be included that use the lowest and highest array indices that 

the loop can affect.  Every array value that can be affected by the test case shall be examined and the 

number of array values shall be identically equal to the number that are set by the loop. 

– If this cannot be done, then the unit shall be rejected as not testable.  (For example, a unit with a loop 

is not testable if during the execution of the loop a single array value is set more than once.) 

 

In case of a static loop (Number of iterations in the loop is controlled by a constant) like 

for (I=0; I<10; I++) � this loop would not have 100% loop coverage since it cannot undergo 0 iteration and 1 

iteration. At any instant only 2 or more iterations are possible. So the loop coverage will be 1/3 � 33.33%. 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 91 of 130 

 

9.6.2.2.5 Decision Coverage 

This measure reports whether Boolean expressions tested in control structures (such as the if-statement and 

while-statement) evaluated to both true and false. The entire Boolean expression is considered one true-or-false 

predicate regardless of whether it contains logical-and or logical-or operators. Additionally, this measure includes 

coverage of switch-statement cases, exception handlers, and interrupts handlers. Also known as: branch 

coverage, all-edges coverage, basis path coverage, and decision-decision-path testing. "Basis path" testing 

selects paths that achieve decision coverage.  

 

Advantages : 

� Simplicity without the problems of statement coverage.  

 

Limitations : 

� A disadvantage of this measure ignores branches within boolean expressions which occur due to short-

circuit operators. 

 

Decision coverage requires two test cases: one for a true outcome and another for a false outcome. For simple 

decisions (i.e., decisions with a single condition), decision coverage ensures complete testing of control 

constructs. For the decision (A or B), test cases (TF) and (FF) will toggle the decision outcome between true and 

false. However, the effect of B is not tested; that is, those test cases cannot distinguish between the decision (A 

or B) and the decision A. 

 

The decision coverage is calculated as follows 

 

                                          Number of Executed Decision Outcomes 

Decision Coverage =  --------------------------------------------------------------    * 100 % 

                                       Total Number of Decision Outcomes 

 

9.6.2.2.5 Logical Combinatory or Modified Condition or Decision Coverage [MC/DC] 

 

This measure requires enough test cases to verify every condition can affect the result of its encompassing 

decision. This measure was created at Boeing and is required for aviation software by RCTA/DO-178B.  

Modified Condition Decision Coverage (MCDC) is a pragmatic compromise which requires fewer test cases than 

Branch Condition Combination Coverage. It is widely used in the development of avionics software, as required 

by RTCA/DO-178B. Modified Condition Decision Coverage requires test cases to show that each Boolean can 

independently affect the outcome of the decision. This is less than all the combinations (as required by Branch 

Condition Combination Coverage). 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 92 of 130 

 

 Definition of Modified Condition Decision Coverage [MC/DC]:  

Every decision has taken all possible outcomes at least once and every condition in a decision has been shown 

to independently affect the decision’s outcome. A condition is shown to independently affect a decision’s 

outcome by varying only that condition while holding all other conditions constant. 

� A decision is a single IF statement, a decision block in a flow chart, a multi-way branch, or a switch on a 

signal flow diagram. 

� A condition is a single Boolean-valued expression that cannot be broken down into simpler Boolean 

expressions.  Complex Boolean expressions within a decision can be made up of multiple conditions. 

� MC/DC applies to: 

– Boolean expressions within an IF statement 

– Boolean expressions within a decision block on a flow chart 

– Boolean expressions in the input column of a truth table 

– Boolean expressions on the right side of an assignment statement 

– Collections of Boolean symbols on a signal flow diagram, the output of which is an output of the 

module or an input to a nonlinear symbol like a switch 

� Conditions (AND, OR, NAND, NOR, XOR, XNOR) shall be tested in accordance with the RTCA/DO178B 

for Modified Conditions / Decision Coverage (MC/DC) as show in the table below: 

 

� For conditions with more than two inputs, this requirement shall be extended by one additional case per 

input.  For example, an AND condition with three inputs requires TTT, TTF, TFT, and FTT. 

� Combinations of different types of conditions shall be tested so that each condition is verified according 

to the rules described above. 

1. Conditions that cannot be verified as described because of coupling shall be documented in the test 

documentation. 

– Strong coupling exists when conditions within a decision cannot be changed independently of 

each other 

– Weak coupling exists when conditions overlap so that sometimes a change to one condition 

affects another 

 

In this type of testing all possibilities of logical combination, multiple conditions and modified conditions are 

tested. Also a test case shall be written to verify whether a condition is shown to independently affect a 

decision’s outcome by varying only that condition while holding all other conditions constant which, is nothing but 

MC/DC. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 93 of 130 

 

If there are “N” inputs 

Then minimum number of test cases required to perform MC/DC is 

“N+1” 

Consider the below example 

 

   A        or         B           and        C RESULT    A         and          B         or       C NUM 

True  False  True True True  False  True 1 

False  False  True False True  False  False 2 

False  True  True True True  True  False 3 

False  True  False False False  True  False 4 

 

In summary for A or (B and C): 

A is shown to independently affect the outcome of the decision condition by test cases 1 and 2; 

B is shown to independently affect the outcome of the decision condition by test cases 2 and 3; 

C is shown to independently affect the outcome of the decision condition by test cases 3 and 4. 

 

In summary for A and (B or C): 

C is shown to independently affect the outcome of the decision condition by test cases 1 and 2; 

B is shown to independently affect the outcome of the decision condition by test cases 2 and 3; 

A is shown to independently affect the outcome of the decision condition by test cases 3 and 4. 

 

The Modified Condition / Decision Coverage [MCDC] is calculated as follows 

 

                     Number of Boolean Operand Values shown to independently affect the decision 

MC / DC = -------------------------------------------------------------------------------------------------------------------   *100% 

                                                    Total Number of Boolean Operands  

9.6.2.2.6 Path Coverage 

This measure reports whether each of the possible paths in each function have been followed. A path is a 

unique sequence of branches from the function entry to the exit. Also known as predicate coverage. Predicate 

coverage views paths as possible combinations of logical conditions. Since loops introduce an unbounded 

number of paths, this measure considers only a limited number of looping possibilities. A large number of 

variations of this measure exist to cope with loops. Boundary-interior path testing considers two possibilities for 

loops: zero repetitions and more than zero repetitions [Ntafos1988]. For do-while loops, the two possibilities are 

one iteration and more than one iteration.  Path coverage has the advantage of requiring very thorough testing. 

Path coverage has two severe disadvantages. The first is that the number of paths is exponential to the number 

of branches. For example, a function containing 10 if-statements has 1024 paths to test. Adding just one more if-



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 94 of 130 

 

statement doubles the count to 2048. The second disadvantage is that many paths are impossible to exercise 

due to relationships of data.  For example, consider the following C/C++ code fragment:  

 

if (success) 

    statement1; 

statement2; 

if (success) 

    statement3; 

Path coverage considers this fragment to contain 4 paths. In fact, only two are feasible: success=false and 

success=true.  

9.6.2.2.7 Other Type of Coverage’s 

 

� CALL COVERAGE  

This measure reports whether you executed each function call. The hypothesis is that faults commonly occur 

in interfaces between modules. It is Also known as call pair coverage.  

 

� DATA FLOW COVERAGE  

This variation of path coverage considers only the sub-paths from variable assignments to subsequent 

references of the variables. The advantage of this measure is the paths reported have direct relevance to 

the way the program handles data. One disadvantage is that this measure does not include decision 

coverage. Another disadvantage is complexity.  

 

Researchers have proposed numerous variations, all of which increase the complexity of this measure. For 

example, variations distinguish between the use of a variable in a computation versus a use in a decision, 

and between local and global variables. As with data flow analysis for code optimization, pointers also 

present problems.  

 

� LINEAR CODE SEQUENCE AND JUMP (LCSAJ) COVERAGE  

This variation of path coverage considers only sub-paths that can easily be represented in the program 

source code, without requiring a flow graph [Woodward1980]. . An LCSAJ is a sequence of source code 

lines executed in sequence. This "linear" sequence can contain decisions as long as the control flow actually 

continues from one line to the next at run-time. Sub-paths are constructed by concatenating LCSAJs. 

Researchers refer to the coverage ratio of paths of length n LCSAJs as the test effectiveness ratio (TER) 

n+2. The advantage of this measure is that it is more thorough than decision coverage yet avoids the 

exponential difficulty of path coverage. The disadvantage is that it does not avoid infeasible paths.  

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 95 of 130 

 

� OBJECT CODE BRANCH COVERAGE  

This measure reports whether each machine language conditional branch instruction both took the branch 

and fell through. This measure gives results that depend on the compiler rather than on the program 

structure since compiler code generation and optimization techniques can create object code that bears little 

similarity to the original source code structure.  

 

Since branches disrupt the instruction pipeline, compilers sometimes avoid generating a branch and instead 

generate an equivalent sequence of non-branching instructions. Compilers often expand the body of a 

function inline to save the cost of a function call. If such functions contain branches, the number of machine 

language branches increases dramatically relative to the original source code. It’s better off testing the 

original source code since it relates to program requirements better than the object code.  

 

� RELATIONAL OPERATOR COVERAGE  

This measure reports whether boundary situations occur with relational operators (<, <=, >, >=). The 

hypothesis is that boundary test cases find off-by-one errors and mistaken uses of wrong relational 

operators such as < instead of <=. For example, consider the following C/C++ code fragment:  

if (a < b) 

    statement; 

Relational operator coverage reports whether the situation a==b occurs. If a==b occurs and the program 

behaves correctly, you can assume the relational operator is not suppose to be <=.  

 

� WEAK MUTATION COVERAGE  

This measure is similar to relational operator coverage but much more general [Howden1982]. It reports 

whether test cases occur which would expose the use of wrong operators and also wrong operands. It works 

by reporting coverage of conditions derived by substituting (mutating) the program's expressions with 

alternate operators, such as "-" substituted for "+", and with alternate variables substituted. This measure 

interests the academic world mainly. Caveats are many; programs must meet special requirements to 

enable measurement.  

9.6.3 Technical Control or Peer Review Phase 

The objective of these reviews and analyses is to ensure that the testing of the code was developed and 

performed accurately and completely. The topics include: 

 

a. Test cases:  

The verification of test cases is presented in paragraph. 

b. Test procedures:  

The objective is to verify that the test cases were accurately developed into test procedures and expected 

results. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 96 of 130 

 

c. Test results:  

The objective is to ensure that the test results are correct and that discrepancies between actual and expected 

results are explained. 

 

In case of any problem found during the unit testing phase, problem reporting mechanism is followed as shown 

below. 

 

9.6.4 Unit Test Procedure or Test Script Content 

Typical content of test script is mentioned below. The comments, definition to different files can be done as 

required by the project based on tool selection. 

%% -------------------------------------------------------------------------------- 

%% -- Include Files 

%% -------------------------------------------------------------------------------- 

%% Include the header files                                           

 

%% ---------------------------------------------------------------------------------- 

%%  Data declarations 

%% ---------------------------------------------------------------------------------- 

%% Declare all the extern data required for test              

%% Declare any test data required for test                       

 

%% ---------------------------------------------------------------------------------- 

%%  Stub  

%% ---------------------------------------------------------------------------------- 

%% Define the stubs simulating the external function than 

%% module under test                                                         

 

%% ---------------------------------------------------------------------------------- 

%% Environment Block  

%% ---------------------------------------------------------------------------------- 

%% This block  the will have the initialization of all data under 

%% test. This block will be tested in all test case unless the 

%% test case overrides the input or, expected value 

Variable 1, initial value = ?, Expected value = ? 

Variable 2, initial value = ?, Expected value = ? 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 97 of 130 

 

Variable 3, initial value = ?, Expected value = ? 

 

%% ---------------------------------------------------------------------------------- 

%%  Test Procedure  

%% ---------------------------------------------------------------------------------- 

%% Test Procedure ID:  

%% Upward Trace: Test Case Identifier 

Variable 1, initial value = ?, Expected value = ? 

Variable 2, initial value = ?, Expected value = ? 

#<Call to unit under test> 

 

%% Test Procedure ID:  

%% Upward Trace: Test Case Identifier 

Variable 1, initial value = ?, Expected value = ? 

Variable 2, initial value = ?, Expected value = ? 

Variable 3, initial value = ?, Expected value = ? 

#<Call to unit under test> 

 

9.7 Organizational Approach to Unit Testing 

When developing a strategy for unit testing, there are three basic organizational approaches that can be taken. 

These are top down, bottom up and isolation. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 98 of 130 

 

9.7.1 Top-Down Approach to Unit Testing 

 

In top down unit testing, individual units are 

tested by using them from the units which 

call them, but in isolation from the units 

called. The unit at the top of a hierarchy is 

tested first, with all called units replaced by 

stubs. Testing continues by replacing the 

stubs with the actual called units, with 

lower level units being stubbed. This 

process is repeated until the lowest level 

units have been tested. Top down testing 

requires test stubs, but not test drivers.  

The above figure illustrates the test stubs and tested units needed to test unit D, assuming that units A, B and C 

have already been tested in a top down approach. A unit test plan for the program shown in below figure, using 

a strategy based on the top down organizational approach, could read as follows: 

 

Step (1) 

Test unit A, using stubs for units B, C and D. 

Step (2) 

Test unit B, by calling it from tested unit A, using stubs for units C and D. 

Step (3) 

Test unit C, by calling it from tested unit A, using tested units B and a stub for unit D. 

Step (4) 

Test unit D, by calling it from tested unit A, using tested unit B and C, and stubs for units E, F and G.  

Step (5) 

Test unit E, by calling it from tested unit D, which is called from tested unit A, using tested units B and C, and 

stubs for units F, G, H, I and J. 

Step (6) 

Test unit F, by calling it from tested unit D, which is called from tested unit A, using tested units B, C and E, and 

stubs for units G, H, I and J. 

Step (7) 

Test unit G, by calling it from tested unit D, which is called from tested unit A, using tested units B, C, E and F, 

and stubs for units H, I and J. 

Step (8) 

Test unit H, by calling it from tested unit E, which is called from tested unit D, which is called from tested unit A, 

using tested units B, C, E, F and G, and stubs for units I and J. 

Step (9) 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 99 of 130 

 

Test unit I, by calling it from tested unit E, which is called from tested unit D, which is called from tested unit A, 

using tested units B, C, E, F, G and H, and a stub for units J. 

Step (10) 

Test unit J, by calling it from tested unit E, which is called from tested unit D, which is called from tested unit A, 

using tested units B, C, E, F, G, H and I. 

 

9.7.1.1 Advantages 

Top down unit testing provides an early integration of units before the software integration phase. In fact, top 

down unit testing is really a combined unit test and software integration strategy. 

 

The detailed design of units is top down, and top down unit testing implements tests in the sequence units are 

designed, so development time can be shortened by overlapping unit testing with the detailed design and code 

phases of the software lifecycle. In a conventionally structured design, where units at the top of the hierarchy 

provide high level functions, with units at the bottom of the hierarchy implementing details, top down unit testing 

will provide an early integration of 'visible' functionality. This gives a very requirements oriented approach to unit 

testing. Redundant functionality in lower level units will be identified by top down unit testing, because there will 

be no route to test it. (However, there can be some difficulty in distinguishing between redundant functionality 

and untested functionality). 

 

9.7.1.2 Limitations 

Top down unit testing is controlled by stubs, with test cases often spread across many stubs. With each unit 

tested, testing becomes more complicated, and consequently more expensive to develop and maintain. As 

testing progresses down the unit hierarchy, it also becomes more difficult to achieve the good structural 

coverage which is essential for high integrity and safety critical applications, and which are required by many 

standards. Difficulty in achieving structural coverage can also lead to confusion between genuinely redundant 

functionality and untested functionality. Testing some low level functionality, especially error handling code, can 

be totally impractical. 

 

Changes to a unit often impact the testing of sibling units and units below it in the hierarchy. For example, 

consider a change to unit D. obviously, the unit test for unit D would have to change and be repeated. In 

addition, unit tests for units E, F, G, H, I and J, which use the tested unit D, would also have to be repeated. 

These tests may also have to change themselves, as a consequence of the change to unit D, even though units 

E, F, G, H, I and J had not actually changed. This leads to a high cost associated with retesting when changes 

are made, and a high maintenance and overall lifecycle cost. 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 100 of 130 

 

The design of test cases for top down unit testing requires structural knowledge of when the unit under test calls 

other units. The sequence in which units can be tested is constrained by the hierarchy of units, with lower units 

having to wait for higher units to be tested, forcing a 'long and thin' unit test phase. (However, this can overlap 

substantially with the detailed design and code phases of the software lifecycle). 

 

The relationships between units in the example program in above figure is much simpler than would be 

encountered in a real program, where units could be referenced from more than one other unit in the hierarchy. 

All of the disadvantages of a top down approach to unit testing are compounded by a unit being referenced from 

more than one other unit. 

9.7.2 Bottom-Up Approach to Unit Testing 

 

In bottom up unit testing, units are 

tested in isolation from the units 

which call them, but using the 

actual units called as part of the 

test. The lowest level units are 

tested first, then used to facilitate 

the testing of higher level units. 

Other units are then tested, using 

previously tested called units. The 

process is repeated until the unit at 

the top of the hierarchy has been 

tested.  

Bottom up testing requires test drivers, but does not require test stubs. The below figure illustrates the test driver 

and tested units needed to test unit D, assuming that units E, F, G, H, I and J have already been tested in a 

bottom up approach. A unit test plan for the program shown in above figure, using a strategy based on the 

bottom up organizational approach, could read as follows: 

Step (1) 

(Note that the sequence of tests within this step is unimportant, all tests within step 1 could be executed in 

parallel.) 

Test unit H, using a driver to call it in place of unit E; 

Test unit I, using a driver to call it in place of unit E; 

Test unit J, using a driver to call it in place of unit E; 

Test unit F, using a driver to call it in place of unit D; 

Test unit G, using a driver to call it in place of unit D; 

Test unit B, using a driver to call it in place of unit A; 

Test unit C, using a driver to call it in place of unit A. 

Step (2) 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 101 of 130 

 

Test unit E, using a driver to call it in place of unit D and tested units H, I and J. 

Step (3) 

Test unit D, using a driver to call it in place of unit A and tested units E, F, G, H, I and J.  

Step (4) 

Test unit A, using tested units B, C, D, E, F, G, H, I and J. 

9.7.2.1 Advantages 

Like top down unit testing, bottom up unit testing provides an early integration of units before the software 

integration phase. Bottom up unit testing is also really a combined unit test and software integration strategy. All 

test cases are controlled solely by the test driver, with no stubs required. This can make unit tests near the 

bottom of the unit hierarchy relatively simple. (However, higher level unit tests can be very complicated). Test 

cases for bottom up testing may be designed solely from functional design information, requiring no structural 

design information (although structural design information may be useful in achieving full coverage). This makes 

the bottom up approach to unit testing useful when the detailed design documentation lacks structural detail. 

Bottom up unit testing provides an early integration of low level functionality, with higher level functionality being 

added in layers as unit testing progresses up the unit hierarchy. This makes bottom up unit testing readily 

compatible with the testing of objects. 

 

9.7.2.2 Limitations 

As testing progresses up the unit hierarchy, bottom up unit testing becomes more complicated, and 

consequently more expensive to develop and maintain. As testing progresses up the unit hierarchy, it also 

becomes more difficult to achieve good structural coverage. 

 

Changes to a unit often impact the testing of units above it in the hierarchy. For example, consider a change to 

unit H. Obviously, the unit test for unit H would have to change and be repeated. In addition, unit tests for units 

A, D and E, which use the tested unit H, would also have to be repeated. These tests may also have to change 

themselves, as a consequence of the change to unit H, even though units A, D and E had not actually changed. 

This leads to a high cost associated with retesting when changes are made, and a high maintenance and overall 

lifecycle cost. 

 

The sequence in which units can be tested is constrained by the hierarchy of units, with higher units having to 

wait for lower units to be tested, forcing a 'long and thin' unit test phase. The first units to be tested are the last 

units to be designed, so unit testing cannot overlap with the detailed design phase of the software lifecycle. The 

relationships between units in the example program in figure 2.2 is much simpler than would be encountered in a 

real program, where units could be referenced from more than one other unit in the hierarchy. As for top down 

unit testing, the disadvantages of a bottom up approach to unit testing are compounded by a unit being 

referenced from more than one other unit. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 102 of 130 

 

9.7.3 Isolation Approach to Unit Testing 

 

Isolation testing tests each unit in isolation 

from the units which call it and the units it 

calls. Units can be tested in any sequence, 

because no unit test requires any other 

unit to have been tested. Each unit test 

requires a test driver and all called units 

are replaced by stubs. The below figure 

illustrates the test driver and tested stubs 

needed to test unit D. 

 

A unit test plan for the program shown in above figure, using a strategy based on the isolation organizational 

approach, need contain only one step, as follows: 

Step (1) 

(Note that there is only one step to the test plan. The sequence of tests is unimportant; all tests could be 

executed in parallel.) 

Test unit A, using a driver to start the test and stubs in place of units B, C and D; 

Test unit B, using a driver to call it in place of unit A; 

Test unit C, using a driver to call it in place of unit A; 

Test unit D, using a driver to call it in place of unit A and stubs in place of units E, F and G, 

(Shown in figure of bottom up approach); 

Test unit E, using a driver to call it in place of unit D and stubs in place of units H, I and J; 

Test unit F, using a driver to call it in place of unit D; 

Test unit G, using a driver to call it in place of unit D; 

Test unit H, using a driver to call it in place of unit E; 

Test unit I, using a driver to call it in place of unit E; 

Test unit J, using a driver to call it in place of unit E. 

 

9.7.3.1 Advantages 

It is easier to test an isolated unit thoroughly, where the unit test is removed from the complexity of other units. 

Isolation testing is the easiest way to achieve good structural coverage, and the difficulty of achieving good 

structural coverage does not vary with the position of a unit in the unit hierarchy. Because only one unit is being 

tested at a time, the test drivers tend to be simpler than for bottom up testing, while the stubs tend to be simpler 

than for top down testing. 

 

With an isolation approach to unit testing, there are no dependencies between the unit tests, so the unit test 

phase can overlap the detailed design and code phases of the software lifecycle. Any number of units can be 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 103 of 130 

 

tested in parallel, to give a 'short and fat' unit test phase. This is a useful way of using an increase in team size to 

shorten the overall time of a software development. A further advantage of the removal of interdependency 

between unit tests is that changes to a unit only require changes to the unit test for that unit, with no impact on 

other unit tests. This results in a lower cost than the bottom up or top down organizational approaches, 

especially when changes are made. 

 

An isolation approach provides a distinct separation of unit testing from integration testing, allowing developers 

to focus on unit testing during the unit test phase of the software lifecycle, and on integration testing during the 

integration phase of the software lifecycle. Isolation testing is the only pure approach to unit testing, both top 

down testing and bottom up testing result in a hybrid of the unit test and integration phases. Unlike the top down 

and bottom up approaches, the isolation approach to unit testing is not affected by a unit being referenced from 

more than one other unit. 

 

9.7.3.2 Limitations 

The main disadvantage of an isolation approach to unit testing is that it does not provide any early integration of 

units. Integration has to wait for the integration phase of the software lifecycle. (Is this really a disadvantage?). 

An isolation approach to unit testing requires structural design information and the use of both stubs and drivers. 

This can lead to higher costs than bottom up testing for units near the bottom of the unit hierarchy. However, this 

will be compensated by simplified testing for units higher in the unit hierarchy, together with lower costs each 

time a unit is changed. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 104 of 130 

 

10.0 Inspection of the outputs of Software Development Life Cycle (SDLC) 

10.1 Inspection Process 

The inspection process lifecycle should be defined prior to development process and each output of SDLC will 

undergo this process. This inspection process lifecycle can be defined using electronic change management 

software.  A detailed inspection process life cycle is shown below:  

 

 

To draw up the 
document 

To inspect the 
document 

To collect and analyse the 
remarks; to answer and bring 
together the duplications 

To debate on the 
rejected remarks 

To record the peers 
findings 

To correct the 
document 

To verify the 
modifications according 
the accepted remarks  

To plan the peer 
review 

Plans and upstream documents Document submitted to peer review 

Date for the debate 

Allocation of the criteria to the peers to get 
a good review coverage (consult the note) 

To verify the records 
and their identifications 

The author 

The peers (moderator 
included) and the author 

The secretary (usually the moderator) 

The author 

The moderator 

The moderator 

The peers 

The 
project 
leader 

The 
author 

Reading sheet 

The same reading sheet 
got together and 
completed with the author 
comments 

The reading sheets with 
the peer conclusions 

Achievement 
report with a 
conclusion about 
the criteria & the 
finding follow-up  

The modified document 
with its issue being 
incremented  

Qualification 
note book 

Note: When a quality engineer 

participates as a peer, he will be in 

charge of the completeness criteria and 

the other peers will check the document 

against the general checklist. Otherwise 

the technical peers will share the two 

checklists. 
 

 

 

 
Each of the activities of the above figure is detailed in the following table: 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 105 of 130 

 

Activity Inputs Outputs Description / comment 

1. Draw up the 

document 

Plan and 

upstream 

documents 

Peer  

review 

dossier 

The main objective of the author is to help the peer. 

So he will make up a dossier as complete as possible. This dossier will 

include the applicable issues of the upstream documents, the 

documents under review, a pre-filled review-form, the known problems 

on the document (e.g. uncovered requirements or uncorrected problem 

reports). 

The author shall check himself the automated verifications, such as 

spelling and traceability matrix establishment. 

Note 1: The peers will review the traceability foundations and results 

Note 2: The documents include the source code and the test data. 

2. Plan the peer 

review 

Availability 

date 

Allocation  

of the 

criteria 

to the  

peers 

Some review may be hold at one third of the phase to assess the 

direction. In this case a second review shall be organized at the 

document ending.  

The author should declare himself the availability of the document. If the 

author says that the document is uncompleted and it is not ready to be 

profitably reviewed, it is probably right. 

The software project manager will select the moderator and the peers. 

A reading duration objective should be estimated in the project plans 

and communicated to the peers. 

Some of the criteria may be allocated to one of the peers (such as the 

standard conformity check, for example). When the quality engineer 

participates as a peer, he will be in charge of the completeness criteria 

and the other peers will check the document against the general 

checklist. Otherwise the technical peers will share the two checklists. 

A meeting could be hold to present the review dossier, the peer review 

process and the criteria allocation. This meeting is optional. 

3. Inspect the 

document 

Peer review 

dossier 

Allocation of 

the criteria to 

the peers  

Individual 

reading 

sheets 

Each peer will fill up his reading form. 

Take care to completely fill the referenced document boxes, including 

upstream documents 

He must fill the criteria table, in order to check whether the coverage of 

all the criteria added cover the DO-178B objectives. 

The functional analysis and the coverage analysis are performed during 

this inspection. The rational (if any) will be included in a specific section 

of the reading sheets. The conclusion will be included in the criteria 

table. 

The reading sheet shall be returned to the author one or two days before 

the debate meeting. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 106 of 130 

 

Activity Inputs Outputs Description / comment 

4. Collect and 

analyze the 

remarks; answer 

and solve the 

duplications  

Individual 

reading 

sheets 

Merged 

reading 

sheets 

The author will define the set of remarks that will be debated during the 

meeting. The moderator will supervise this selection if three or more 

peers take part to the review. 

The author will accept some remarks; so there is no need for a debate 

about those accepted ones. 

The points that need explanations, the major remarks and the remarks 

that the author would like to reject will be debated during the meeting. 

The author will merge the individual reading sheet in a single document 

that will support the meeting. In this document the remark should be 

prioritized; the more important the first. The author’s answers will be 

recorded in the same document that will support the debate. 

5. Debate on the 

rejected remarks 

Merged 

reading 

sheets 

Peer 

findings 

The moderator leads the debate (not the author).  

The moderator is responsible for the understanding of all the 

participants, and for that all the major points are debated. 

The conclusion of the debate between the peers and the author should 

be aligned on the most critical peer. It means that the document should 

be modified if only one of the peers state so. The debate meeting may 

convince this peer that a modification is unnecessary, but this decision 

cannot be a majority voting and cannot be the author’s decision. This 

basic rule is taken order to improve the general quality 

6. Records the peer 

findings 

Peer findings Peer 

review 

report 

Problem 

reports 

A secretary will record the conclusion. He cannot be the author: He may 

be the moderator but a third people would be better. 

A pleasant way to get an agreement upon the finding wording is to show 

the peer review report with a video equipment during the debate. 

The problem identified in upstream documents will be recorded in 

Problem reports. 

7. Correct the 

document 

Peer review 

report 

Modified 

document 

The objective of the peers is to identify the problems. The way to correct 

the problems is left to the author, and when the project plans are 

impacted, to the software project manager. 

8. Check the 

modifications 

according the 

accepted 

remarks 

Peer review 

report 

Modified 

document 

Achieveme

nt report 

The moderator will check that all the actions defined in the Peer review 

report are correctly handled. 

The moderator will record his conclusions in an achievement report, with 

the modified document as reference (and its issue incremented). This 

report will include a conclusion about the peer finding follow-up and the 

DO-178B criteria compliance. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 107 of 130 

 

Activity Inputs Outputs Description / comment 

9. Check the 

records and their 

identifications 

Peer review 

report 

Modified 

document 

Achievement 

report 

Verification 

note 

book 

The moderator will check whether the peer review outputs are correctly 

archived. 

The moderator will add a reference to the Achievement report in the 

Verification notebook. 

 

10.2 Inspection Process Guidelines 

No. 

DO-178B Objectives 

Inspection Guidelines 

Description Ref. 

1.  
Test procedures are 

correct 
6.3.6.b 

The test cases/procedure exists and is written in accordance with test 

guidelines. 

The review should check that all low-level requirements are exercised by 

the test case(s) and the test procedure implements the test cases. 

No test case should be written without any associated low level 

requirement 

No test procedure should be written without any associated test case 

2.  

Tests results are correct 

and discrepancies 

explained 

6.3.6.c 

The tests results are obtained. Any discrepancies, if applicable are 

detailed in problem reports. 

The test execution should use the required version of the tested source 

code and low-level requirement. Additionally the tool coverage and build 

options should be verified. 

For level A, source to object traceability should be done 

3.  

Test coverage of software 

structure is achieved 

(modified 

condition/decision) 

6.4.4.2 

Structural coverage report exists to depicts 100% MC/DC coverage. 

Note that the coverage should be 100% structural coverage (as per DO-

178B level) by combining the coverage attained from the tool supported 

by static coverage analysis or justification if required. 

4.  

Test coverage of software 

structure (decision 

coverage) is achieved 

6.4.4.2.a 

6.4.4.2.b 
Structural coverage report exists to depicts 100% decision coverage. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 108 of 130 

 

No. 

DO-178B Objectives 

Inspection Guidelines 

Description Ref. 

5.  

Test coverage of software 

structure (statement 

coverage) is achieved 

6.4.4.2.a 

6.4.4.2.b 
Structural coverage report exists to depict 100% statement coverage. 

6.  

Test coverage of software 

structure (data coupling 

and control coupling) is 

achieved 

6.4.4.2.c 

Data Coupling: 

The test coverage of the data flow at low level requirements is attained 

by associating the data from data dictionary which includes all global 

data (linker map may also be used), to the low level requirement based 

test case.  

Control Coupling: 

The calling tree, as documented in Software Design Description, is 

analyzed to identify all of the functions in the software and is reviewed 

using software design review checklist. 

Review of any unused function than one listed in the calling tree is 

available. Also, the structural coverage report generated by low level 

requirement based test execution will be analyzed to check that the 

entire calling trees have been executed. 

The data and control coupling analysis report is included as part of 

software verification results for completeness 

 

10.3 Problem Reporting Mechanism in Unit Testing 

 

During the unit testing process a tester can confront with different types of problems. A predefined problem 

reporting has to be defined before the start of this campaign. A detailed problem reporting mechanism is as 

shown in below diagram.  



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 109 of 130 

 

Start

Code Review

Defect found?

Generate SSPR

Is module
testable?

Perform Unit Testing

Defect found?

Perform Technical
Control

Is Technical
Control ok?

Is defect found in

Is Code Review
SSPR available

Send the SSPR to the
customer

Update the SSPR with
unit testing defects

Generate SSPR

End

Yes

NoYes

Yes

Yes

No

No
No

No

Unit
testing

Is SSPR available?
No

Yes

Discuss with
customer

Discuss with
customer

Is SSPR required?

Yes

No Yes

No

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 110 of 130 

 

11.0 MISCELLEANEOUS TOPICS 

11.1 REQUIREMENT TRACEABILITY 

 
To demonstrate that the requirements have been satisfied, a trace matrix should be used to demonstrate 

traceability between system requirements and software design data. Traceability will be verified in both 

directions. 

 

The following documents will be referenced by the trace matrix to provide test coverage traceability: 

• Software Verification Cases & Procedures (SVCP), Hardware (HW)/Software (SW) Integration, 

• Software Verification Cases & Procedures (SVCP), Software Integration, 

• Software Verification Cases & Procedures (SVCP), Module Test,  

• Software Verification Cases & Procedures (SVCP), Module Test. 

Figure 6.2.1-1 Details the requirements trace flow between the relevant documents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Requirements Document

Verification Document

Process Outputs

Requirements Trace

 
SSD 

 
SRS 

 

 
SDD 

 

 
Source Code 

 

 
Executable 

SVCP HW-SW 
Integration 

 
SVCP SW-W 
Integration 

SVCP 
 Unit Tests 

 

 
ICD Document 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 111 of 130 

 

11.2 SOFTWARE CHANGE REQUEST LIFE CYCLE 

 

The Software Change Request [SCR] process lifecycle should be defined prior to launching the Software 

Verification Process [SVP]. The software change request process lifecycle is usually defined using a finite state 

machine diagram. The finite state machine diagram shall consist of states and state transitions.  

 

The software change request process lifecycle can be defined using electronic change management software. A 

generic software change request process lifecycle is shown below:  

 

 

Start

End

Deffered

ResolvedAssignedIn ReviewEntered

Obsolete

Reject

M
a
rk

 a
s

O
b

s
o

le
te Defer

Rejected

Resolved
AssignVerify

Submit a CR

Store Results

Concluded

Rework
Reconsider

Verify

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 112 of 130 

 

11.3 ASSEMBLY TESTING 

• Perform review if the assembly sources are implicitly or, explicitly covered by high/low level tests for 

requirement coverage. If yes, then perform hand analysis on the structural coverage measure per test case 

flow in case no tool exists to automatically produce the structural coverage 

• Add additional tests if the requirements pertaining to assembly source are not covered by high/low level 

tests 

• Add additional test cases if there is a coverage gap and associate with existing/new requirement 

• If no test are available, perform an low-level tests as per the low-level requirement, structural coverage 

measure analysis can be performed manually 

Alternatively, the coverage measure could be aided using debug whilst execution informally.  

 

Sample manual coverage analysis format: 

Line # 
Test 

Case # 

Test 

Case # 

Test 

Case # 

Test 

Case # 

Test 

Case # 
ASM Code Extract 

1 NA NA NA NA NA ; comment 

2 NA NA NA NA NA ; comment 

3 NA NA NA NA NA ; comment 

4 NA NA NA NA NA ; comment 

5 1 2 3 4   assembly statement 1 

6 1 2 3 4   assembly statement 2 

7   2       assembly decision 1 

8 1 2 3 4   assembly statement 3 

9     3     assembly decision 2 

10     3     assembly statement 4 

 

Conclusion : 

All lines are covered [Yes/No]:  

Decision Coverage Percentage:  ___ (Covered Count / Total Count) 

Statement Coverage Percentage: ___ (Covered Count / Total Count) 

 

Following decision(s) are not covered: 

 

Following statement(s) are not covered: 

 

Note: In assembly, MC/DC cannot be applicable, as in the assembly source code there cannot be more 

than two operands. Hence only decision and/or statement coverage analysis should be done. 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 113 of 130 

 

11.4 SOURCE TO OBJECT ANALYSIS (FOR LEVEL A ONLY) 

Objective: 

• To verify the functional correctness of the generated assembly code to source code. 

• There is no additional functionality that is generated in the assembly code with the pre-defined set of 

compiler options. 

 

Usually two approaches are used for source to object analysis. The agreement of the approach should be 

documented in the plan. 

 

Approach 1: Make the representative code of the project, assemble and list, and manually review line to line of 

high level language (example C) and the assembled/listed code for functional correctness.  

 

Approach 2: Use actual project source code instead of representative code, remaining same as approach 1 

Hence the approach should be agreed prior commencing this activity. In most of the project, representative code 

is acceptable. 

 

The detail of the approach 1 is stated below. Same can be used for approach 2, but with only difference of actual 

code instead of representative code: 

• Constructs and Keyword to the specific language should be defined in plan or, standard 

• Generate the representative code that covers the various combination of keyword/construct usage 

• Substantiate the representation of code, with the actual code on keyword/construct 

 

Example: 

C Construct/ 
Keyword 

Description 
Used in 
Project, 
Yes/No 

Project Source Code 
File Name 

Representative 
C File 

- subtraction operator Yes File1.c C-TST1.c 

-- decrement value by one Yes   

! not operation Yes   

!= not equal relational operator Yes   

% modulus operator Yes   

& address operator Yes   

&& logical AND operator Yes   

&= logical AND assignment operator. Yes   

* multiplication operator (or pointer) Yes   

*= multiplication assignment operator Not used   



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 114 of 130 

 

C Construct/ 
Keyword 

Description 
Used in 
Project, 
Yes/No 

Project Source Code 
File Name 

Representative 
C File 

     

int integer type Yes   

interrupt signifies the function is an interrupt routine. Yes   

cregister 
allows access to the I/O port space of the 
TI processor 

Not Used   

 

• Assemble and list the representative code (or actual code as the case be), with the same compiler option as 

used by project 

• Analyze the line-to-line high level code (ex. C language) to the assembled and listed code 

 

Example format: 

Source Code Assembly code Tracea

ble to 

Source 

(Y/N) 

Analysis 

j=0; MOV       *-SP[2],#0 Y 
Store 0 to stack location, -2 words from top of 

stack. 

for(i=1; i<k; i++) 

MOV       *-SP[1],  

Y 

Store 16-bit AL register to stack location,-1 

words from top of stack 

MOV       AL,*-SP[3] Store 16-bit AL register from stack location,-3 

words from top of stack 

CMP       AL,*-SP[1]  Compare contents of AL with stack,-1 word 

from top of stack. 

BF        L2,LEQ Branch Fast to L2 when AL is Less Then or 

Equal to *-SP[1] 

Conclusion: The assembly code performs the intended function of the source code and is reviewed as traceable to the 

source code. 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 115 of 130 

 

11.5 APPENDIX E: DO-178B OUTPUTS OF SOFTWARE VERIFICATION PROCESS 

 

11.5.1 Verification of Outputs of Software Requirements Process 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 116 of 130 

 

11.5.2 Verification of Outputs of Software Design Process 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 117 of 130 

 

11.5.3 Verification of Outputs of Software Coding & Integration Process 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 118 of 130 

 

11.5.4 Verification of Outputs of Integration Process 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 119 of 130 

 

11.5.5 Verification of Outputs of Verification Process 

 

 
 
 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 120 of 130 

 

12.0 DO-178B SW CERTIFICATION 

This chapter presents the understanding on the DO-178B certification audit for the task(s) carried out to meet the 

DO-178B objectives fully or partially, as specified in the project plans. The chapter describes the purpose, 

procedure, typical problems founds, and suggested mitigation during the certification audits. The chapter 

workflow is organized as: 

1. Purpose and Types of Audit 

2. Typical entry criteria to start the audit 

3. Typical Audit Agenda 

4. Typical Audit Execution 

5. Common issues raised during the audit and proposed mitigation 

6. Preparation for Certification Audit 

12.1 Certification Audit 

12.1.1 Background 

1. RTCA/DO-178B, Section 9.2 

Certification authority reviews may take place at the applicant’s facilities or the applicant’s suppliers’ 

facilities. 

2. RTCA/DO-178B, Section 10.3 

The certification authority may review at its discretion the software life cycle processes and their outputs 

during the software life cycle as discussed in subsection 9.2 

3. Order 8110.49  

• Provides guidelines for performing software reviews 

• Documents the review approach, which is detailed in FAA Job Aid “Conducting Software Reviews 

Prior to Certification 

• When FAA should be involved 

• To what extent and areas FAA should be involved (LOFI – Level of FAA Involvement) 

12.1.2 Purpose of the Review 

The purpose of the software review is to assess whether or not the software developed for a project complies 

with the applicable objectives of RTCA/DO-178B.  

More specifically: 

• Address issues in a timely manner 

• Physically examine compliance data 

• Verify adherence to plans and procedures 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 121 of 130 

 

Terms and definition:  

• Compliance is the satisfaction of a DO-178B objective. 

• A finding is the identification of a failure to show compliance to one or more of the RTCA/DO-178B 

objectives. 

• An observation is the identification of a potential software life cycle process improvement.  A observation is 

not a RTCA/DO-178B compliance issue and does not need to be addressed before software approval. 

• An action is an assignment to an organization or person with a date for completion to correct a finding, 

error, or deficiency identified when conducting a software review. 

12.1.3 Types of Review 

There are four types of software certification reviews: 

Planning Stage of Involvement (SOI) # 1 

Development Stage of Involvement (SOI) # 2 

Verification Stage of Involvement (SOI) # 3 

Final Certification Stage of Involvement (SOI) # 4 

12.1.4 Stages of Involvement & DO-178B Objectives 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 122 of 130 

 

12.1.5 SOI Readiness Criteria 

SOI Description Readiness Criteria Data Required 
DO-178B 
Annex A 

Table 

1 

 

Determine if plans and standards 

provide an acceptable means for 

satisfying objectives of RTCA/DO-

178B 

Initial software planning process is complete: 

• Plans and standards have been internally 

reviewed 

• Plans and standards have been reviewed by 

SQA 

• Plans and standards are approved and under 

configuration  

control 

• PSAC 

• SDP 

• SVP 

• SCMP 

• SQAP 

• Standards 

• Tool Qual. Plans 

• Verification Data 

• SQA data 

• SCM data 

A-1, 

A-8, 

A-9, 

A-10 

2 

 

Determine if software development 

is in accordance with approved 

plans and standards 

Conducted when at least 50% of development data 

is complete: 

• High-level requirements are documented, 

reviewed, and traceable to system 

requirements 

• Software architecture is defined and reviews 

and analyses are complete 

• Low-level requirements are documented, 

reviewed, and traceable to high-level 

requirements 

• Source code implements low-level 

requirements, is traceable to low-level 

requirements, and has been reviewed 

• Standards for Software 

Development 

• Software Requirements Data 

• Design Description 

• Source Code 

• Software Verification Results  

• Problem Reports 

• Software Configuration 

Management Records 

• Software Quality Assurance 

Records 

A-2, 

A-3, 

A-4, 

A-5, 

A-8, 

A-9, 

A-10 

3 

• Determine if software 

verification is in accordance 

with approved plans 

• Ensure requirements, design, 

code and integration are 

appropriately verified 

• Ensure verification process 

will achieve: 

o Requirements based test 

coverage 

o Appropriate level of 

structural coverage 

Conducted when at least 50% of verification and 

testing data is complete: 

• Development data is complete, reviewed, and 

under configuration control 

• Test cases and procedures are documented, 

reviewed, and under configuration control 

• Test cases and procedures have been 

executed (formally or informally) 

• Test results are documented 

• Testing environment is documented and 

controlled 

 

• Software Requirements Data 

• Design Description 

• Source Code 

• Software Verification Cases and 

Procedures 

• Software Verification Results 

• Problem Reports 

• Software Configuration 

Management Records 

• Software Quality Assurance 

Records 

A-2, 

A-6, 

A-7, 

A-8, 

A-9, 

A-10 

4 

• Determine compliance of final 

product with objectives of 

RTCA/DO-178B 

• Verify that all software related 

problem reports, action items, 

and certification issues have 

been addressed 

Conducted when final software build is complete 

and ready for formal system certification approval: 

• Software Conformity Review has been 

conducted 

• Software Accomplishment Summary and 

Software Configuration Index are complete 

• All other software life cycle data are complete 

and under configuration control 

• Software Conformity Records 

• Software Life Cycle Environment 

Configuration Index 

• Software Configuration Index 

• Problem Reports 

• Software Accomplishment 

Summary 

All tables 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 123 of 130 

 

12.1.6 Typical Audit Agenda 

Following is the typical SOI audit agenda: 

1. Introduction of all participants 

2. Presentation and Reviews based on SOI 

Stage of Involvement#1 

a. Presentation having content at the minimum as:  

• System Overview 

• Development, Verification approach:  

• Software architecture draft, as applicable 

• Organization structure with development/verification team, meeting independence, QA 

organization 

• SCM organization, problem reporting workflow 

• CM Version of CC1 items under review 

b. Closure Review of offline planning reviews remarks 

 

Stage of Involvement#2 

a. Presentation having content at the minimum as:  

• System Overview 

• Overview on the Process change 

• SOI1 audit recap, closure summary 

• CM Version of CC1 items under review including system and customer baseline as 

applicable 

• Status snapshot on development 

 

b. Review of development artifacts on the requirements, design, code including traceability, review 

artifacts and problem report 

 

Stage of Involvement#3 

a. Presentation having content at the minimum as:  

• System Overview 

• Overview on the Process change 

• SOI2 audit recap, closure summary 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 124 of 130 

 

• CM Version of CC1 items under review including system and customer baseline as 

applicable 

• Status snapshot on development and verification 

 

b. Review of development and verification artifacts on the requirements, design, code, test, result, 

structural coverage including traceability, review artifacts and problem report 

c. Demonstration of test setup, and random test execution 

 

Stage of Involvement#4 

a. Presentation having content at the minimum as:  

• SOI3 audit recap, closure summary 

• CM Version of CC1 items under review (via SCI) including system and customer baseline as 

applicable 

• Status snapshot on development and verification 

 

b. Review of Formal Test Execution Results and Review records 

c. Review on offline comment on the accomplishment summary 

d. Review of archieve on the CM system  

 

3. Debrief of the audit 

 

Typically the audit report is shared by the certification responsible containing: 

• List of attendees’ with signature 

• Item list with their CM version 

• List of Findings, Actions, Observation 

12.1.7 Typical Audit Execution 

Following is an example of a typical SOI3 review after the presentation (or overview) of the project is done by the 

auditee. 

1. Assessment of SOI2 closure 

2. Assessment of change of plans / checklist if any.  

Focus area:  

• Changes in the checklists should be reflected in the review records 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 125 of 130 

 

• Process changes during the planning revisions, and thereby its impact on applicable artifacts 

3. Conduct slice review: 

This involves the review of randomly picked trace of high level requirement and its thread to design, 

code and test 

Some of the points considered for picking the slice: 

• Arithmetic (or equation based) requirement to follow up the test on robustness & usage of Data 

Dictionary (for range checks) 

• Requirement containing conditions to follow up the test sufficiency for MCDC 

Focus area:  

• Items under review are configuration controlled 

• Review records of the requirements, design, code, test case, procedure and result 

• Completeness of review checklist, each point being addressed as Yes, No or N/A. Rational 

provided for filling the checklist as “Yes”, “N/A”. For every “No”, action being raised and 

tracked to closure 

• Requirement coverage to the test case is complete, and if it is partially covered it is 

documented 

• Structural Coverage obtained and its analysis 

• Independence criteria as per the plan 

 

4. Review the PR tracking mechanism  

Focus area:  

• Completeness of PR field as per the plan 

• CCB records 

• Review of resolution and verification on the version stated in Problem Report 

5. Witness few test case execution for different levels of test and tool set 

Focus area:  

• Is the setup instruction sufficient to reproduce the test environment and items required for test 

execution (source code, executable, test script)? 

• Can the randomly selected test be executed? 

6. Tool Qualification 

7. Audit the Quality team, to see the evidence as per SQAP is available 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 126 of 130 

 

12.2 Lessons Learnt & Common Issues 

12.2.1 Analysis of the outcome of SOI audits 

Most of the issues are found in two stages of Involvement Audits that are SOI-2 and SOI-3 during DO-178B & 

DO-254 certification audits. 

SOURCE: SOI audits on 10+ projects during 2008-09. The number includes the allocation, both to a 

reputed Indian MNC in aerospace domain and its customer. 

0

10

20

30

40

50

60

70

80

90

21

90

22

 

1
6 5 3 2 2 2 0

37

15

10

4
6

1
1 2

5
3

6

5

6

1

1

2

1
1

1

3
1

0

5

10

15

20

25

30

35

40

45

50

Actions

Observations

Findings

 
 

 

12.2.2 Issues & Mitigation Found during the Audit 

Following are the issues noted based on the certification reviews & the proposed mitigation. 

A. Planning Phase 

COMMON ISSUES & CONCERN CORRECTIVE ACTION / SUGGESTED MITIGATION 

Inconsistencies or, contradictory statements between the planning 

documents Make DO-178B Planning Compliance Matrix for each 

plans, PSAC, SDP, SVP, CMP, QAP & Standards 

Avoiding duplicate information in multiple plan 

Perform walkthrough of the planning artifacts 

Planning document has additional details that are not relevant for 

the specific plan. Example – Detailing the verification strategy, 

environment etc in Software Development Plan 

Lack in the identification of need of Tool Qualification 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 127 of 130 

 

COMMON ISSUES & CONCERN CORRECTIVE ACTION / SUGGESTED MITIGATION 

Checklists non compliant to DO-178B objective 
Make checklist compliance matrix to DO-178B 

objective 

Standards too generic and does not cover the tool usage 

perspective 

Make the standards inline to the usage of tools like 

DOORS, Rhapsody, Rational Test Real Time, 

VectorCast, Matlab/Simulink etc 

Lack of test case selection criteria Need to add the test selection criteria 

Transition Criteria  – either too generic or too difficult to be adhered 

to 

Make transition criteria checklist that could be 

quantified 

 

 

 

B. Development Phase 

COMMON ISSUES & CONCERN CORRECTIVE ACTION / SUGGESTED MITIGATION 

Incorrect decomposition of Data and control flow in 

software architecture 

Usage of tool that can support the decomposition of process & Data 

such as Rhapsody, Matlab etc 

Insufficiency of Requirement coverage (HLR � LLR 

� Code) 

Use DOORS. Review the requirement coverage from 

forward/backward trace 

Derived Requirement Rationale 
As part of requirement standard, make a rationale attribute to 

support the existence of derived requirements 

Requirements not verifiable 
Involvement of Test engineer during requirements review for the 

verifiability aspect 

Manual Code review approach ends up in not 

finding the key functional issue 

Use static rule checkers. HCL proposes to using MISRA:2004 code 

compliance and tools such as PC-Lint, Logiscope. This can save 

effort & be more productive 

Issues with the software when loaded on  the target 

board on system environment (more than target 

board) 

Perform developmental integration on the setup that is closer to the 

system 

 

 

 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 128 of 130 

 

C. Testing Phase 

COMMON ISSUES & CONCERN CORRECTIVE ACTION / SUGGESTED MITIGATION 

Insufficient Requirements coverage w.ith respect 

to Test Case, i.e, multiple test case(s) or block of 

test cases traces to multiple requirement. Hence 

the credibility of requirement coverage of 

individual requirement questionable 

Test Case format to be planned with sample test case(s), requirement(s). 

Trace the requirement to the each test blocks within the test case suite 

Robustness Test not sufficient or does not exists 
Have testing guidance on the robustness criteria, team orientation, and 

review checklist asking for specific question on robustness 

Description of test case 
Agreement on the sample test case descriptions. Description to state the 

object of the test case and not the test case itself 

Data Dictionary, Test Case mismatch 
Standard to document the content of data dictionary, design and test 

review to have the specific checklist point on adherence to data dictionary 

Insufficient / Incorrect Test Setup Instruction 
Person not part of project executing the test independently. QA 

witnessing the same 

 
QA to perform the setup, build and load audit prior to test execution. CM 

review of test result archive in association to the test procedure versions 

Coverage Analysis justification inappropriate 

 

Clearly conclude if the lack of coverage requires any change in test, 

requirement, software or, it is justifiable for its presence like defensive 

code, standards etc 

Data & Control Coupling either overdone or, does 

not meet the objectives 

Perform the Data and Control Coupling as described in paper - Paper-

DO-178B_SW_Low_Level_Testing.pdf 

 

 

D. Configuration Management 

COMMON ISSUES & CONCERN 
CORRECTIVE ACTION / SUGGESTED 

MITIGATION 

Problem report analysis and its linkage to the version of the impacted 

items 

Avoiding multiple CM system if possible.  

strengthening CCB approval on this focus area 

including independent quality check 

Incorrect / Insufficient Impact Analysis 

Ensure the impacted items have been updated as 

per and only what the analysis says with revision. 

Justify as part of CCB if changes have been done 

additionally 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 129 of 130 

 

COMMON ISSUES & CONCERN 
CORRECTIVE ACTION / SUGGESTED 

MITIGATION 

Inconsistency in the configuration version of review artifact of test cases, 

test procedure and the requirements, and incorrect checklist version 

itself. Same points holds good for development & test results output also 

Perform QC check as part of release for 

association of review artifacts to the configuration 

version, QA audit 

 

 

E. Quality Assurance 

COMMON ISSUES & CONCERN CORRECTIVE ACTION / SUGGESTED MITIGATION 

Incomplete Review record fields and its 

closure 

Generate review guideline & induction plan for every reviewer. QA audit on 

checklist closure 

Transition criteria adherence QA audit 

 

 

 

 

 

 

 
 

 



A REAL-TIME EMBEDDED AIRBORNE AVIONICS SOFTWARE’S VERIFICATION & VALIDATION TUTORIAL 

 

AUTHOR: RAVI HARSHA A, GMITE-2008, IIMB Page 130 of 130 

 

 

 

 

 

Whoever tries to steal the 

contents of this book shall die 

“Naked & Alone”. 
 

- Curse of the Author 


